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Foreword

Machine learning (ML) is at the heart of a tremendous wave of technological innova‐
tion that has only just begun. Picking up where the “data-driven” wave of the 2000s
left off, ML enables a new era of model-driven decision making that promises to
improve organizational performance and enhance customer experiences by allowing
machines to make near-instantaneous, high-fidelity decisions, at the point of interac‐
tion, based on the most current information available.

To support the productive use of ML models, the practice of machine learning has
had to evolve rapidly from a primarily academic pursuit to a fully fledged engineering
discipline. What was once the sole domain of researchers, research scientists, and
data scientists is now, at least equally, the responsibility of ML engineers, MLOps
engineers, software engineers, data engineers, and more.

Part of what we see in the evolution of machine learning roles is a healthy shift in
focus from simply trying to get models to work to ensuring that they work in a way
that meets the needs of the organization. This means building systems that allow the
organization to produce and deliver them efficiently, hardening them against failure,
enabling recovery from any failures that do happen, and most importantly doing all
this in the context of a learning loop that helps the organization improve from one
project to the next.

Fortunately, the machine learning community hasn’t had to bootstrap the knowledge
required to accomplish all this from scratch. Practitioners of what has come to be
called MLOps have had the benefit of a vast array of knowledge that was developed
through the practice of DevOps for traditional software projects.

The first wave of MLOps focused on the application of technology and process disci‐
pline to the development and deployment of models, resulting in a greater ability for
organizations to move models from “the lab” to “the factory,” as well as an explosion
of tools and platforms for supporting those stages of the ML lifecycle.

xv



1 D. Sculley et al. “Hidden Technical Debt in Machine Learning Systems,” Advances in Neural Information
Processing Systems (January 2015): 2494-2502. https://oreil.ly/lK0WR.

2 Todd Underwood, “When Good Models Go Bad: The Damage Caused by Wayward Models and How to
Prevent It,” TWIMLcon, 2021, https://oreil.ly/7pspJ.

3 D. Sculley, “Data Debt in Machine Learning,” interview by Sam Charrington, The TWIML AI Podcast, May 19,
2022, https://oreil.ly/887p4.

But what about the ops in MLOps? Here again we stand to benefit from progress
made operating traditional software systems. A significant contributor to maturing
the operational side of DevOps was that community’s broader awareness and applica‐
tion of site reliability engineering (SRE), a set of principles and practices developed at
Google and many other organizations that sought to apply engineering discipline to
the challenges of operating large-scale, mission-critical software systems.

The application of methodologies from software engineering to machine learning is
not a simple lift and shift, however. While one has much to learn from the other,
the concerns, challenges, and solutions can differ quite significantly in practice. That
is where this book comes in. Rather than leaving it to each individual or team to
identify how to apply SRE principles to their machine learning workflow, the authors
of this book aim to give you a head start by sharing what has worked for them at
Google, Apple, Microsoft, and other organizations.

To say that the authors are well qualified for their task is an understatement. My work
has been deeply informed and influenced by several of them over the years.

In the fall of 2019, I organized the first TWIMLcon: AI Platforms conference to
provide a venue for the then-nascent MLOps community to share experiences and
advance the practice of building processes, tooling, and platforms for supporting
the end-to-end machine learning workflow. Among us insiders it became a bit of a
running joke just how many of the presentations at the event included a rendition
of the “real-world ML systems” diagram from D. Sculley’s seminal paper, “Hidden
Technical Debt in Machine Learning Systems.”1

At our second conference, in 2021, Todd Underwood joined us to present “When
Good Models Go Bad: The Damage Caused by Wayward Models and How to Prevent
It.”2 The talk shared the results of a hand analysis of approximately 100 incidents
tracked over 10 years in which bad ML models made it, or nearly made it, into
production.

I’ve since had the pleasure of interviewing D. for The TWIML AI Podcast for an
episode titled “Data Debt in Machine Learning.”3 The depth of experience D. and
Todd shared in these interactions comes through clearly in this book.

xvi | Foreword
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And, if you’re coming from the SRE perspective, Niall needs no introduction. His
books Site Reliability Engineering and The Site Reliability Workbook helped popularize
SRE among DevOps practitioners in 2016 and beyond.

(Though I’ve not previously come across Cathy and Kranti’s work, it is clear that their
experience structuring SRE organizations and driving large-scale consumer-facing
applications of ML informs many aspects of the book, particularly the chapters on
implementing ML organizations and integrating ML into products.)

This book provides a valuable lens into the authors’ experiences building, operating,
and scaling some of the largest machine learning systems around.

The authors avoid falling into the trap of attempting to document a static set of archi‐
tectures, tools, or recommendations, and in so doing succeed at offering so much
more: a survey of the vast complexity and myriad considerations that teams must
navigate to build and operate—and to build operable—machine learning systems,
along with the principles and best practices the authors have collected through their
own extensive navigation of the terrain.

Their goal is stated early on in the text: to “enumerate enough of the complexity to
dissuade any readers from simply thinking… ‘this stuff is easy.’”

If we’ve learned anything as a community over the past several years it’s that the
ability to create, deliver, and operate ML models in an efficient, repeatable, and
scalable manner is far from easy. We’ve also learned, though, that because of its will‐
ingness to openly share experiences and build on the learnings of others, the machine
learning community is able to advance rapidly, and what’s hard today becomes easier
tomorrow. I’m grateful to Cathy, Niall, Kranti, D., and Todd for allowing us all to
benefit from their hard won lessons and for helping to advance the state of machine
learning in production in the process.

— Sam Charrington
Founder of TWIML, host of The TWIML AI Podcast

Foreword | xvii





1 See “27 Incredible Examples of AI and Machine Learning in Practice” by Bernard Marr for examples that
might surprise you. This Forbes article is from 2018, now ancient history in ML terms, and the industry
has continued to expand across many industries and applications. There is simultaneously both completely
unjustified ML/AI hype and way more real, working applications to more industries than most people are
aware of.

Preface

This is not a book about how machine learning works. This is a book about how to
make machine learning work—for you.

The way that machine learning (ML) works is fascinating. The math, algorithms, and
statistical insights that surround and support ML are themselves of interest, and what
they can achieve when applied to the right data can be nothing short of magical. But
we do something a little different in this book. We are not algorithm oriented—we are
whole-system oriented. In short, we talk about everything other than the algorithms.
Plenty of other works cover the algorithmic component of ML in great detail, but
this one is deliberately focused on the whole lifecycle of ML, giving it the time and
attention it doesn’t really get elsewhere.

This means that we talk about the messy, complicated, and occasionally frustrating
work involved in shepherding data correctly and responsibly; reliable model build‐
ing; ensuring a smooth (and reversible) path to production; safety in updating;
and concerns about cost, performance, business goals, and organizational structure.
We attempt to cover everything involved in having ML happen reliably in your
organization.

Why We Wrote This Book
We firmly believe at least some of the hype: ML and AI techniques are currently
reshaping computing and society at an accelerating rate. To that extent, the public
hype has not caught up with the private reality in some respects.1 But we are also
grounded and experienced enough to understand just how laughably unreliable and

xix

https://oreil.ly/ITkPX


2 See the Google Cloud report “Business Impacts of Machine Learning”, this excerpt being perhaps the biggest
reason: “Standard ML projects tend to have an ROI of between two to five times the investment in the first
year of implementation.”

3 Or to put it another way, there is plenty of material on how to build an ML model, but not much on how to
build an ML system. A model can also be unreliable in different ways than a system.

problematic many real-world ML systems actually are. The technology press writes
about space flight, while most organizations still have trouble staying upright on their
bicycles; these are the early days still. Now is the perfect time to actively pay attention
to what ML can do and how your organization might benefit from it.

Having said this, though, we recognize that many organizations are worried about
“missing out” on ML, and everything it could do for (and to) their organization. The
good news is, there’s no need to panic—it is possible to get started now and to be
sensible and disciplined about how you work with ML, in a way that successfully bal‐
ances both obligation and reward. The bad news, and the reason many organizations
are worried, is that the curve of complexity is quite steep. Once you get past the
simpler aspects, many of the techniques and technologies are just being invented, and
it’s hard to find a solid, paved path.

This book should help you navigate that complexity. We believe that, despite the
immaturity of the industry, there is much to be gained by focusing on simplicity and
standardization, an approach that has the beneficial side effect of making it easier to
get started. Ultimately, organizations that deeply integrate ML into their business will
benefit—some substantially2—but they will, of course, need a degree of sophistication
about how that is done. A simpler, standardized foundation will facilitate developing
that capability better than ad hoc experiments, or even worse, a system that works but
no one knows how or why.

SRE as the Lens on ML
A plethora of ML books exist already, many of which promise to make your ML
journey better in some way, often focusing on making it easier, faster, or more
productive. Few, however, talk about how to make ML more reliable, an attribute
often overlooked or undervalued.3 That is what we focus on, since looking at how
to do ML well through that lens has specific benefits you don’t get in other ways.
The reality is that current development best practices don’t map straightforwardly
onto the challenges of doing ML well end to end. Instead, seeing these questions
through a site reliability engineering (SRE) lens—holistically, sustainably, and with
the customer experience in mind—is a much better framework for understanding
how to meet those challenges.

You can find a parallel argument in Building Secure and Reliable Systems by Heather
Adkins et al. (O’Reilly, 2020). An unreliable system can often be parlayed into system
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access for an attacker—security and reliability are intimately connected. Doing one
well is not easily separated from doing the other. Similarly, ML systems, with their
surprising behaviors and indirect yet profound interconnections, motivate a more
holistic approach toward deciding how to integrate development, deployment, pro‐
duction operations, and long-term care.

We believe, in short, that ML systems being reliable captures the essence of what
customers, business owners, and staff really want from them.

Intended Audience
We are writing for anyone who wants to take ML into the real world and make
a difference in their organization. Accordingly, this book is for data scientists and
ML engineers, for software engineers and site reliability engineers, and for organiza‐
tional decision makers—even nontechnical ones, although parts of the book are quite
technical:

Data scientists and ML engineers
We’ll explore how the data, features, and model architecture you use change the
way your model works, and how manageable it is in the long run, all with an eye
to model velocity.

Software engineering building ML infrastructure or integrating ML into existing
products

We address both how to integrate ML into systems and how to write ML infra‐
structure. An improved understanding of how the ML lifecycle works helps with
developing functionality, designing application programming interfaces (APIs),
and supporting customers.

Site reliability engineers
We’ll show how ML systems typically break and how best to build (and manage)
them to avoid those failure modes. We’ll also explore the implications of ML
model quality not being something a reliability engineer can entirely ignore.

Organizational leaders who want to add ML to their existing products or services
We will help you understand how best to integrate ML into your existing
products and services, and the structures and organizational patterns required.
Having a sensible way of assessing risks and advantages when making ML-related
decisions is important.

Everyone who is rightfully concerned about the ethical, legal, and privacy implications of
developing and deploying ML

We will lay out the issues clearly and point to practical steps you can take
to address these concerns before they cause damage to your users or your
organization.
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One, perhaps counterintuitive, thing to note: many of the chapters are potentially
most valuable to the people whose work is not the topic of that chapter. For example,
Chapter 2 can certainly be read by data scientists and ML engineers. But it’s poten‐
tially even more useful to infrastructure/production engineers and organizational
leaders. For the former groups, of course, fine-tuning what you’re already working on
is useful, but for the latter, it can provide a fresh and complete introduction to a topic
area that may be entirely new.

How This Book Is Organized
Before we talk about the structure of the book in detail, let’s provide broader context
about how we selected the topics and their organization. It might not be what you
were expecting.

Our Approach
Engineers need to employ specific approaches and techniques to make ML systems
work well. But each of these approaches is subject to an enormous number of deci‐
sions once put into place in a particular organization and for a particular purpose.
It is not feasible for this book to cover all, or even most, of the implementation
choices that readers will generally face. Similarly, we will de-emphasize concrete
recommendations for specific pieces of software. We hope that this separation from
the day-to-day will allow us to express ideas more clearly, but for this kind of book,
remaining platform agnostic is beneficial in and of itself.

Let’s Knit!
Though from time to time we use other examples, our main method of illustrating
the book’s content is a hypothetical online store—a purveyor of textile supplies via a
website called yarnit.ai. This concept is worked through in some detail throughout
the book in order to demonstrate how choices about one stage (say, data acquisition
or normalization) have consequences for the rest of the stack, business, and so on.

This store is a single, relatively simple business (buy knitting and crocheting prod‐
ucts, put them on a website, and market and sell them to customers). This explicitly
does not capture the full complexities of the sectors you see using ML in the real
world, such as manufacturing, self-driving cars, real-estate marketing, and medical
technology. However, our example provides enough insight (and manages the scope)
such that we feel the implementation complexities we deal with here offer lessons
applicable to other domains. (In other words, the limitations of our example are, we
believe, worth it.)

To explore the example in more depth, let’s consider the case of a retailer sourcing
products from a huge variety of suppliers, and selling them globally to the public
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on a website. The business is to attract and maintain a customer base that purchases
products at a reasonable margin to cover the costs of operating the site and produce
a profit. In some ways, it’s quite a simple business, but the complexity will show
up almost immediately as we try to add ML. At a high level, we are interested in
improving sales, improving customer experience, lowering costs, improving margins,
and making our whole business operate more efficiently.

While adding ML technologies to business operations at first is usually driven by
narrow and concrete goals, such as efficiency, that is not the endgame. ML has the
potential to positively or negatively transform the business fundamentally, changing
the way products are created and selected, customers are identified and served, and
commercial opportunities are uncovered. ML-adopting businesses that successfully
deploy these technologies will outperform their competitors in the long run; a recent
survey of over 2,000 executives conducted by McKinsey indicated that 63% of execs
had ML/AI projects that improved the bottom line, though organizations are often
cagey about precisely how much. But in the short run, adoption must start with
concrete, intelligible goals like “increased conversions”—i.e., more sales.

Our website, yarnit.ai, has many sources of data to implement these initial, concrete
improvements and many potential applications for ML. To begin, we will consider
customer-facing examples as simple as recommendation (other products a customer
may like) and prediction (which products are most likely to sell to a given customer,
for example). Then we will move on to more behind-the-scenes applications where
ML might be used to optimize entire business processes. Concretely, we’ll work
through several examples of areas where ML can improve our operations, although,
of course, not limited to these requirements:

Website search results
Customers should get the best rankings for their search queries, showing them
the products that most match those terms and that they are most interested in
purchasing.

Discovery and suggestion
Customers should be presented the opportunity to consider products related to
the products they are looking at or purchasing. We can find products that might
have a high likelihood of being useful and therefore purchased.

Dynamic pricing
We should identify products that are not selling as quickly as we want, and
reduce their prices to clear up space in the warehouse. Likewise, if we are run‐
ning low on extremely popular products, we may want to temporarily increase
their price in order to slow sales and make more money, while also possibly
ordering more inventory.
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Cart abandonment
What is driving customers to add items to their cart but not complete purchases?
Can we predict this? Are there ways for us to learn how to intervene with
a reminder, a well-timed discount, or other features that improve checkout
completion?

Inventory and ordering automation
We might want to use ML to predict how to order replacement products from
our suppliers based on a prediction of future sales and the predicted delivery
delays.

Trust and safety
This is an industry-wide term for detecting likely fraudulent behavior—in this
case, attempted purchases—and increasing verification steps as necessary. Man‐
ual review and heuristics won’t scale, so it makes sense to turn to ML for help.

Margin improvement
We can use various techniques to try to improve the profit that we make on each
sale—ranging from suggesting additional higher-margin products to customers
while they shop, to running marketing campaigns to generate more demand for
the highest-margin products.

These are just a few obvious places that ML might be trialed to determine whether
it adds value worth the added complexity and cost. To be clear: ML is not always
successful, and even when it is successful, it’s not always worth the trouble. Stand‐
ing up a complex pipeline with exacting data formats, significant engineering, and
professional production operations requirements is a costly undertaking that needs
to produce noticeable and definite value for the customers and the business. The
maintenance costs are also considerable. All of this effort might not be worth it for
your organization. This book will help you to understand whether it is.

Organizations like our yarn store should approach ML with an open mind but a
willingness to experiment, measure, and possibly cancel the applications if they do
not work out. This is why planning to assess the probability of success before making
unalterable changes to the store’s website infrastructure is critical.

For completeness, we need to say that obviously this is only a single example of the
kind of organization and application that might find uses for ML.

Navigating This Book
We begin with an introduction and general principles. Here, relative newcomers to
ML (or ML in production) can orient themselves to the problem space as a whole. It
is also where we cover critical topics that impact all of the rest of the chapters, such as
data management, what an ML model is, how to evaluate its quality, what a feature is
(and why you would care), and fairness and privacy.
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Next we focus on ML models and their lifecycle. We explain how models are created
(known as training) and how to use them in production (known as serving). We
outline how incredibly important it is to know what your models are doing, and
how to do that at model development time and while the model is running in
production. Last in this section, we cover the question of continuous ML: models that
are continually updated with reference to a constantly adjusting reality.

Finally, we touch on the complicated question of how ML is introduced into organi‐
zations, and what happens to them when this takes place. We start with a concrete
illustration of the complexities of ML in the incident response domain—something
we expect basically every engineer with production responsibilities can relate to.
We look at some of the critical questions about how organizations could integrate
ML into existing (and emerging) products, often a process best done with some
thought put into it in advance. Then we look at how ML could be implemented
organizationally: centralized, distributed, and every point in between, followed by
concrete guidelines and recommendations in the next chapter. Finally, we end with
real case studies of ML implemented in organizations around the world.

After all of that, well, first of all, you deserve a break—but second of all, you should
be well equipped to understand everything you’re likely to come across when doing
ML for the first time, or even when refining how it works inside your organization
when you already have experience.

A Note on Chapter Credits
In general, each chapter had significant input from all authors, whether it be in
the conceptual, review, first-draft, edit, or finalization stage, so by default we do
not distinguish individual chapter authorship. However, when a chapter has had a
significant contribution outside of the core team, we note it here as well as in the
chapter itself:

• Chapter 4, written by Robbie Sedgewick and Todd Underwood•
• Chapter 6, written by Aileen Nielsen•
• Chapter 9, written by Niall Murphy and Aparna Dhinakaran•

The individual stories in Chapter 15 are credited to each individual author (Cheng
Chen, Daniel Papasian, Todd Philips, Harsh Saini, Riqiang Wang, and Ivan Zhou) and
have been edited for clarity and consistency.

About the Authors
The authors of this book collectively have decades of experience building and run‐
ning various kinds of ML systems in production. We have helped productionize large
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ad-targeting systems; built large search-and-discovery systems; published ground‐
breaking research on ML in production; and constructed and run the critical data
ingestion, processing, and storage systems wrapped around them all. We have collec‐
tively had the (unfortunate) opportunity to witness firsthand most of the spectacular
and fascinating ways these systems can break. But the good news is, we learned how
to build systems that are resilient to the most common failure modes that ML systems
suffer—technically and organizationally.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.
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CHAPTER 1

Introduction

We begin with a model, or framework, for adding machine learning (ML) to a
website, widely applicable across a number of domains—not just this example. This
model we call the ML loop.

The ML Lifecycle
ML applications are never really done. They also don’t start or stop in any one place,
either technically or organizationally. ML model developers often hope their lives will
be simple, and they’ll have to collect data and train a model only once, but it rarely
happens that way.

A simple thought experiment can help us understand why. Suppose we have an ML
model, and we are investigating whether the model works well enough (according
to a certain threshold) or doesn’t. If it doesn’t work well enough, data scientists,
business analysts, and ML engineers will typically collaborate on how to understand
the failures and improve upon them. This involves, as you might expect, a lot of work:
perhaps modifying the existing training pipeline to change some features, adding or
removing some data, and restructuring the model in order to iterate on what has
already been done.

Conversely, if the model is working well, what usually happens is that organizations
get excited. The natural thought is that if we can make so much progress with one,
naïve attempt, imagine how much better we can do if we work harder on it and get
more sophisticated. This typically involves—you guessed it—modifying the existing
training pipeline, changing features, adding or removing data, and possibly even
restructuring the model. Either way, more or less the same work is done, and the first
model we make is simply a starting point for what we do next.

1



Let’s look at the ML lifecycle, or loop, in more detail (Figure 1-1).

Figure 1-1. ML lifecycle

ML systems start with data, so let’s start on the left side of the diagram and go
through this loop in more detail. We will specifically look at each stage and explain,
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in the context of our shopping site, who in the organization is involved in each stage
and the key activities they will carry out.

Data Collection and Analysis
First, the team takes stock of the data it has and starts to assess that data. The
team members need to decide whether they have all the data they require, and then
prioritize the business or organizational uses to which they can put the data. They
must then collect and process the data.

The work associated with data collection and analysis touches almost everyone in the
company, though how precisely it touches them often varies a lot among firms. For
example, business analysts could live in the finance, accounting, or product teams,
and use platform-provided data every day. Or data and platform engineers might
build reusable tools for ingesting, cleaning, and processing data, though they might
not be involved in business decisions. (In a smaller company, perhaps they’re all
just software or product engineers.) Some places have formal data engineering roles.
Others have data scientists, product analysts, and user experience (UX) researchers all
consuming the output of work from this phase.

For YarnIt, our web shop operator, most of the organization is involved in this
step. This includes the business and product teams, which will know best the highest-
impact areas of the business for optimization. For example, they can determine
whether a small increase in profit for every sale is more important to the business,
or whether instead it makes more sense to slightly increase order frequency. They
can point to problems or opportunities with low- and high-margin products, and talk
about segmentation of the customers into more and less profitable customers. Prod‐
uct and ML engineers will also be involved, thinking about what to do with all of this
data, and site reliability engineers (SREs) will make recommendations and decisions
about the overall pipeline in order to make it more monitorable, manageable, and
reliable.

Managing data for ML is a sufficiently involved topic that we’ve devoted Chapter 2
to data management principles and later discuss training data in Chapters 4 and 10.
For now, it is useful to assume that the proper design and management of a data
collection and processing system is at the core of any good ML system. Once we have
the data in a suitable place and format, we will begin to train a model.

ML Training Pipelines
ML training pipelines are specified, designed, built, and used by data engineers, data
scientists, ML engineers, and SREs. They are the special-purpose extract, transform,
load (ETL) data processing pipelines that read the unprocessed data and apply the
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1 ETL is one common abstraction to represent this kind of data processing. Wikipedia’s “Extract, transform,
load” page has a reasonable overview.

2 Which mature libraries and systems we use depends mostly on application. These days, TensorFlow, JAX, and
PyTorch are all widely used for deep learning, but there are many other systems if your application benefits
from a different style of learning (XGBoost is common, for example). Selecting a model architecture is mostly
beyond the scope of this book, although small pieces of it are covered in Chapters 3 and 7.

ML algorithm and structure of our model to the data.1 Their job is to consume
training data and produce completed models, ready for evaluation and use. These
models are either produced complete at once or incrementally in a variety of ways—
some models are incomplete in that they cover only some of the available data, and
others are incomplete in scope as they are designed to cover only part of the ML
learning as a whole.

Training pipelines are one of the only parts of our ML system that directly and
explicitly use ML-specific algorithms, although even here these are most commonly
packaged up in relatively mature platforms and frameworks such as TensorFlow and
PyTorch.

Training pipelines also are one of the few parts of our ML system in which wrestling
with those algorithmic details is initially unavoidable. After ML engineers have built
and validated a training pipeline, probably by relying on relatively mature libraries,
the pipeline is safe to reuse and operate by others without as much need for direct
statistical expertise.2

Training pipelines have all the reliability challenges of any other data transformation
pipeline, plus a few ML-specific ones. The most common ML training pipeline
failures are as follows:

• Lack of data•
• Lack of correctly formatted data•
• Software bugs or errors implementing the data parsing or ML algorithm•
• Pipeline or model misconfiguration•
• Shortage of resources•
• Hardware failures (somewhat common because ML computations are so large•

and so long-running)
• Distributed system failures (which often arise because you moved to using a•

distributed system for training in order to avoid hardware failures)

All of these failures are also characteristic of the failure modes for a regular (non-ML)
ETL data pipeline. But ML models can fail silently for reasons related to data distri‐
bution, missing data, undersampling, or a whole host of problems unknown in the
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3 Consider reading Andrej Karpathy’s excellent 2019 blog post, “A Recipe for Training Neural Networks,” for
more.

regular ETL world.3 One concrete example, covered in more detail in Chapter 2,
hinges on the idea that missing, misprocessing, or otherwise not being able to use
subsets of data is a common cause of failure for ML training pipelines. We’ll talk
about ways to monitor training pipelines and detect these kinds of problems (gener‐
ally known as shifts in distribution) in Chapters 7 and 9. For now, let’s just remember
that ML pipelines really are somewhat more difficult to operate reliably than other
data pipelines, because of these kinds of subtle failure modes.

In case it’s not already clear, ML training pipelines are absolutely and completely a
production system, worthy of the same care and attention as serving binaries or data
analysis. (If you happen to be in an environment where no one except you believes
this, it is small comfort to know there will be enough examples to the contrary to
persuade anyone—eventually.) As an example of what can happen if you don’t pay
sufficient attention to production, we’re aware of stories told about companies built
on models generated by interns who have now left the company, and no one knows
how to regenerate them. It is probably facile to say so, but we recommend you never
end up in that situation. Making a habit of writing down what you’ve done and
turning that into something automated is a huge part of avoiding the outcomes we
allude to. The good news is that it’s eminently possible to start small, with manual
operations and no particular reproducibility required. However, becoming successful
will require automation and auditing, and our view is that the sooner you can move
to your model training being automated, gated by some simple checks for correctness
and model preservation, the better.

In any event, assuming we can successfully build a model, we will need to integrate it
into the customer-facing environment.

Build and Validate Applications
An ML model is fundamentally a set of software capabilities that need to be unlocked
to provide value. You cannot just stare at the model; you need to interrogate it—ask
it questions. The simplest way to do this is to provide a direct mechanism to look
up predictions (or report on another aspect of the model). Most commonly, though,
we have to integrate with something more complicated: whatever purpose the model
has is generally best fulfilled by integrating the model with another system. The
integration into our applications will be specified by staff in our product and business
functions, accomplished by ML engineers and software engineers, and overseen by
quality analysts. For much more detail on this, see Chapter 12.

Consider yarnit.ai, our online shopping site where people from all walks of life
and all over the world can find the best yarn for knitting or crocheting, all with
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4 If you are familiar with the concept of A/B testing from ecommerce generally, this is also an appropriate place
to make sure that the plumbing for such testing is correctly working as part of the integration testing. A great
use case here is to be able to distinguish user behavior in the presence and absence of ML suggestions.

AI-based recommendations! Let’s examine, as an example, a model that recommends
additional purchases to a shopper. This model could take the shopping history of a
user as well as the list of products currently in their cart, along with other factors
like the country they normally ship to, the price ranges they normally purchase, and
so on. The model could use those features to produce a ranked list of products that
shoppers might contemplate purchasing.

To provide value to the company and to the user, we have to integrate this model with
the site itself. We need to decide where we will query the model and what we’ll do
with the results. One simple answer might be to show some results on a horizontal
list just below the shopping cart when a user is thinking about checking out. This
seems like a reasonable first pass, providing some utility to shoppers and possibly
some extra revenue for YarnIt.

To establish how well we are doing with our integration, the system should log what it
decides to show and whether users take any actions—do they add items to their cart
and ultimately buy them? By logging such events, this integration will provide new
feedback for our model, so that it can train on the quality of its own recommenda‐
tions and begin improving.4 At this stage, though, we will simply validate that it works
at all: in other words, that the model loads into our serving system, the queries are
issued by our web server application, the results are shown to users, the predictions
are logged, and the logs are stored for future model training. Next up is the process of
evaluating the model quality and performance.

Quality and Performance Evaluation
ML models are useful only if they work, of course. It turns out that surprisingly
detailed work is required to actually answer that question—beginning with the almost
amusing, but absolutely true point that we have to decide what will count as work‐
ing, and how we will evaluate model performance against that target. This usually
involves identifying the effect that we’re trying to create, and measuring it across
various subsets (or slices) of representative queries or use cases. This is covered in
much more detail in Chapter 5.

Once we have decided what to evaluate, we should begin the process by doing it
offline. The simplest way to think about this is that we issue what we believe to
be a representative set of queries and analyze the results, comparing the answers to
a believed set of “correct” or “true” responses. This should help us determine how
well the model should work in production. Once we have some confidence in the
basic performance of the model, we can do an initial integration, either live or dark
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5 Naively, we might just generate a random number and select 1% of them to get the model. But this would
mean that the same user would, even in the same web session, sometimes get model-generated recommenda‐
tions and sometimes not. This is unlikely to help us figure out all aspects of whether the model works and
might generate genuinely bad user experiences. So then, for a web application, we might select 1% of all
logged-in users to get the model-generated results or perhaps 1% of all cookies. In that case, we will not easily
be able to tell the impact of model-generated results on users, and there might be bias in the selection of
current users versus new users. We might want the same user to sometimes get model-generated results and
sometimes not, or we might want some users to always do so, but others only on particular sessions or days.
The main point is that how to randomize access to ML results here is a somewhat statistically complicated
question.

launching the system. In a live launch, the model takes live production traffic, affects
the website and dependent systems, and so on. If we are careful or lucky, this is a
reasonable step to take, as long as we are monitoring key metrics to make sure we’re
not damaging the user experience.

A dark launch involves consulting the model and logging the result, but not using
it actively in the website as users see it. This can give us confidence in the technical
integration of the model into our web application but will probably not give us much
confidence about the quality of the model.

Finally, there’s a middle ground: we might build the capability in our application
to only sometimes use the model for a fraction of users. While the selection of this
fraction is a surprisingly advanced topic beyond the scope of this book,5 the general
idea is simple: try out the model on some queries and gain confidence in not only the
integration but also the model quality.

Once we gain confidence that the model is not causing harm and is helping our users
(and our revenue, hopefully!), we are almost ready to launch. But first, we need to
focus on monitoring, measurement, and continuous improvement.

Defining and Measuring SLOs
Service-level objectives (SLOs) are predefined thresholds for specific measurements,
often known as service-level indicators (SLIs), that define whether the system is
performing according to requirements. A concrete example is “99.99% of HTTP
requests completing successfully (with a 20x code) within 150 ms.” SLOs are the
natural domain of SREs, but they are also critical for product managers who specify
what the product needs to do, and how it treats its users, as well as data scientists,
ML engineers, and software engineers. Specifying SLOs in general is challenging, but
specifying them for ML systems is doubly so because of the way that subtle changes in
data, or even in the world around us, can significantly degrade the performance of the
system.

Having said that, we can use obvious separations of concern to get started when
thinking about SLOs for ML systems. First of all, we can use the divisions between
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serving, training, and the application itself. Second, we have the divisions between the
traditional golden four signals (latency, traffic, errors, saturation) and the internals of
ML operations, themselves substantially less generic than the golden signals, but still
not completely domain specific. Third, we have SLOs related to the working of the
ML-enhanced application itself.

Let’s look more concretely at some very simple suggestions of how these ideas about
SLOs might apply directly to yarnit.ai. We should have individual SLOs for each
system: serving, training, and the application. For serving the model, we could simply
look at error rates, just as we would any other system. For training, we should
probably look at throughput (examples per second trained or perhaps bytes of data
trained if our models are all of comparable complexity). We might establish an overall
SLO for model training completion as well (95% of training runs finish within a
certain number of seconds, for example). And in the application, we should probably
monitor metrics such as number of shown recommendations, and successful calls to
the model servers (from the perspective of the application, which may or may not
match the error rate reported by the model serving system).

Notice, however, that none of these examples is about the ML performance of the
models. For that, we’ll want to set SLOs related to the business purpose of the applica‐
tions themselves, and the measurement might be over considerably longer periods of
time. Good starting places for our website would probably be click-through rate on
model-generated suggestions and model-ranked search results. We should probably
also establish an end-to-end SLO for revenue attributable to the model and measure
that not just in aggregate but also in reasonable subslices of our customers (by
geography or possibly by customer type).

We examine this in more detail in Chapter 9, but for the moment we ask you to
accept there are reasonable ways to arrive at SLOs for an ML context, and they
involve many of the same techniques that are used in non-ML SLO conversations
elsewhere (though the details of how ML works are likely to make such conversations
longer). But don’t let the complexities get in the way of the basics. Ultimately, it is
critical that product and business leads specify which SLOs they can tolerate, and
which they cannot, so the production engineering resources of the organization are
all focused on accomplishing the right goals.

Once we have gathered the data, built the model, integrated it into our application,
measured its quality, and specified the SLOs, we’re ready for the exciting phase of
launching!

Launch
We will now get direct input from customers for the first time! Here product software
engineers, ML engineers, and SREs all work together to ship an updated version
of our application to our end users. If we were working with a computer-based or
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mobile-based application, this would involve a software release and all of the quality
testing that those kinds of releases entail. In our case, though, we’re releasing a new
version of the website that will include the recommendations and results driven by
our ML models.

Launching an ML pipeline has factors in common with launching any other online
system, but also has very much its own set of concerns specific to ML systems.
For general online system launch recommendations, see Chapter 32 of Site Reliabil‐
ity Engineering: How Google Runs Production Systems, edited by Betsy Beyer et al.
(O’Reilly, 2016). You’ll definitely want the basics of monitoring/observability, control
of releases, and rollback to be covered—going forward with a launch that doesn’t have
a defined rollback plan is dangerous. If your infrastructure doesn’t allow you to roll
back easily, or at all, we strongly recommend you solve that first before launching. For
ML-specific concerns, we outline a few of them in detail next.

Models as code
Remember that models are code every bit as much as your training system binaries,
serving path, and data processing code are. Deploying a new model can most defi‐
nitely crash your serving system and ruin your online recommendations. Deploying
new models can even impact training in some systems (for example, if you are using
transfer learning to start training with another model). It is important to treat code
and model launches similarly: even though some organizations ship new models over
(say) the holiday season, it’s entirely possible for the models to go wrong, and we’ve
seen this happen in a way that required code fixes shortly thereafter. In our view, they
have equivalent risk and should use equivalent mitigation.

Launch slowly
When deploying a new version of an online system, we are often able to do so
progressively, starting with a fraction of all servers or users and scaling up over time
only as we gain confidence in our system behaving correctly and the quality of our
ML improvements. Explicitly here, we are trying to limit damage and gain confidence
in two dimensions: users and servers. We do not want to expose all users to a terrible
system or model if we happen to have produced one; instead, we show it to a small
collection of end users first and incrementally grow thereafter. Analogously, for our
server fleet, we do not want to risk all of our computing footprint at once if we
happen to have built a system that doesn’t run or doesn’t run well.

The trickiest aspect of this is ensuring that the new system cannot interfere with
the old system during the rollout. The most common way this would happen for
ML systems is via intermediate storage artifacts. Specifically, changes in format and
changes in semantics cause errors in the interpretation of data. These are covered in
Chapter 2.
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6 For completeness, it is also true that there’s a safe way to roll out a new data format: specifically, by adding
support for reading the format in a progressive rollout that completes before the system starts writing the
format. This was not what was done in this case, obviously.

Release, not refactor
The general precept of changing as little as possible at one time applies in many
systems, but is particularly acute in ML systems. Behavior of the overall system is so
prone to change (by changes in underlying data, etc.) that a refactoring that would be
trivial in any other context could make it impossible to deduce what is going wrong.

Isolate rollouts at the data layer
When doing a progressive rollout, remember that the isolation must be at the data
layer as well as at the code/request/serving layer. Specifically, if a new model or
serving system logs output that is consumed by older versions of the code or model,
diagnosing problems can be long and tricky.

This is not just an ML problem, and failure to isolate the data of a new code path
from an older code path has provided some exciting outages over the years. This
can happen to any system that processes data produced by a different element of the
system, although the failures in ML systems tend to be subtler and harder to detect.

Progressive Rollouts in a Stateful System
Story time: one of the authors worked on a payments system that experienced errors
during a new feature rollout. While it was unexpected, it’s not exactly unprecedented
in the world of running systems, and so it was an easy fix to just roll back the update.
This was especially true given errors were rising in proportion to the rollout.

Or so the team thought! Unfortunately, as the rollback completed, errors shot to
100%, and the team was in a panic. After much debugging, it turned out the update
had actually changed some data formats in anticipation of the new feature, and they
were incompatible with the format the old system expected. The errors occurred
when a newer component wrote a log that happened to be picked up by an older
binary, as happened during the rollout. A rollback removed the ability to correctly
process the new format logs that had already been written. In fact, if the team had
just let the rollout complete (or done it all at once), the errors would have gone
away. The main lesson here is that you need to think holistically about all the system
components that might need to participate in a rollback—and particularly the data
layer.6
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Measure SLOs during launch
Ensure that you have at least one dashboard that shows the freshest and most sensi‐
tive metrics, and keep track of those during the launch. As you figure out which
metrics you care most about and which are most likely to indicate some kind of a
launch failure, you can encode these in a service that can automatically stop your
launch if things are going badly in the future.

Review the rollout
Either manually or automatically, make sure that someone or something is watching
during a launch of any kind. Smaller organizations or bigger (or more unusual)
launches should probably be watched by humans. As you get confidence, as men‐
tioned previously, you can start to rely on automated systems to do this and can
significantly increase the rate of launching!

Monitoring and Feedback Loops
Just as for any other distributed system, information about the correct, or incorrect,
functioning of our ML system is key to operating it effectively and reliably. Identify‐
ing the primary objectives of “correct” functioning is still clearly the role for product
and business staff. Data engineers will identify signals, and software engineers and
SREs will help implement the data collection, monitoring, and alerting.

This is closely related to the SLO discussion earlier, since monitoring signals often
feed directly into selection or construction of SLOs. Here we explore the categories in
slightly more depth:

System health, or golden signals
These are no different from any non-ML signal. Treat the end-to-end system as
a data ingestion, processing, and serving system and monitor it accordingly. Are
the processes running? Are they making progress? Is new data arriving? And
so on (you’ll see more detail in Chapter 9). It is easy to be distracted by the
complexity of ML. It is important to remember, however, that ML systems are
just that: systems. They have all of the same failure modes as other distributed
systems, plus some novel ones. Don’t forget the basics, which is the idea behind
the golden signal approach to monitoring: find generic, high-level metrics that are
representative of system behavior overall.

Basic model health, or generic ML signals
Checking on basic model health metrics is the ML equivalent of systems health:
it is not particularly sophisticated, or tightly coupled to the domain, yet includes
basic and representative facts about the modeling system. Are new models of
the expected size? Can they be loaded into our system without errors? The key
criterion in this case is whether you need any understanding of the model’s
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7 Don’t forget data drift either: a model from 2019 would have a very different idea about the importance and
meaning of face masks in most parts of the world than a model from 2020.

contents in order to do the monitoring; if you don’t, the monitoring you are
doing is a matter of basic model health. There is substantial value to be had in
this context-free approach.

Model quality, or domain-specific signals
The most difficult thing to monitor and instrument is model quality. There is
no hard line between an operationally relevant model quality problem and an
opportunity for model quality improvement. For example, if our model has poor
recommendations for people shopping for needles but not yarn on our site, that
could be an opportunity to improve our model (if we chose to launch with
this level of quality), or it could be an urgent incident that requires immediate
response (if this is a recent regression).7 The difference is context. This is also the
most difficult aspect of ML systems for most SREs to come to terms with: there
is no objective measure of “good enough” for model quality, and, worse yet, it’s a
multidimensional space that is hard to measure. Ultimately, product and business
leaders will have to establish real-world metrics that indicate whether models are
performing according to their requirements, and the ML engineers and SREs will
need to work together to determine which quality measures are most directly
correlated with those outcomes.

As a final step in the loop, we need to ensure that the ways that our end users interact
with the models make it back into the next round of data collection and are ready
to travel the loop again. ML serving systems should log anything they think will be
useful so they can improve in the future. Typically, this is at the very least the queries
they received, the answers they provided, and something about why they provided
those answers. “Why” can be as simple as a single-dimensional relevance score, or it
can be a more complex set of factors that went into a decision.

We’ve completed our first trip around the loop and are ready to start all over. By this
point, yarnit.ai should have at least minimal ML functionality added, and we should
be in a position to start continuously improving it, either by making the first models
better or by identifying other aspects of the site that could be improved with ML.

Lessons from the Loop
It should be clear now that ML begins and ends with data. Successfully, reliably
integrating ML into any business or application is not possible without understanding
the data that you have and the information you can extract from it. To make any of
this work, we have to tame the data.
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8 “Taming the Tail: Adventures in Improving AI Economics” by Martin Casado and Matt Bornstein is an article
that’s useful to consider in this context.

It should also be clear that there is no single order to implementing ML for any given
environment. It usually makes sense to start with the data, but from there, you will
need to visit each of these functional stages and even potentially revisit them. The
problems we want to solve inform the data we need. The serving infrastructure tells
us about the models we can build. The training environment constrains the kind of
data we will use and how much of it we can process. Privacy and ethics principles
shape each of these requirements as well. The model construction process requires a
holistic view of the entire loop, but also of the entire organization itself. In the ML
domain, a strict separation of concerns is not feasible or useful.

Beneath all of this is the question of organizational sophistication, and risk tolerance
with respect to ML. Not all organizations are ready to make massive investments
in these technologies, and to risk their critical business functions on unproven algo‐
rithms—and they shouldn’t! Even for organizations with a lot of experience with
ML and the ability to evaluate the quality and value of models, most new ML ideas
should be trialed first, because most new ML ideas don’t work out. In many ways,
ML engineering is best approached as a continual experiment, deploying incremental
changes and optimizations and seeing what sticks by evaluating success criteria with
the help of product management. It’s not possible to treat ML as a deterministic
development process, as much of software engineering attempts to do today. Yet even
given the baseline chaos of today’s world, you can significantly improve the chances
of your ML experiments eventually working out by being disciplined about how you
do the first one.8

As the implementation is cyclical, this book can absolutely be read in almost any
order. Pick a chapter that is closest to what you care most about right now and start
there. Then, figure out your most pressing questions and head to that chapter next.
All of the chapters have extensive cross-references into the other chapters.

If you are an in-order sort of reader, that works fine too, and you’ll start with the data.
People who are curious about the way that fairness and ethics concerns have to be
incorporated into every part of the infrastructure should skip ahead to Chapter 6.

By the end of the book, you should have a concrete understanding of where to start
the journey of incorporating ML into your organization’s services. You will also have a
roadmap of changes that will need to take place for that process to be successful.
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CHAPTER 2

Data Management Principles

In this book, we are rarely concerned with the algorithmic details of how models are
constructed or how they’re structured. The most exciting algorithmic development
of last year is the mundane executable of next year. Instead, we are overwhelmingly
interested in two things: the data used to construct the models, and the processing
pipeline that takes the data and transforms it into models.

Ultimately, ML systems are data processing pipelines, and their purpose is to extract
usable and repeatable insights from data. There are some key differences between
ML pipelines and conventional log processing or analysis pipelines, however. ML
pipelines have some very different and specific constraints and fail in different ways.
Their success is hard to measure, and many failures are difficult to detect. (We cover
these topics at length in Chapter 9.) Fundamentally, they consume data, and output
a processed representation of that data (though vastly different forms of both). As
such, ML systems depend thoroughly and completely on the structure, performance,
accuracy, and reliability of their underlying data systems. This is the most useful way
to think about ML systems from the reliability point of view.

In this chapter, we will start with a deep dive on data itself:

• Where data comes from•
• How to interpret data•
• Data quality•
• Updating data sources (which we use and how we use them)•
• Assembling data into an appropriate form for use•
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1 Version control for different versions of the data itself might also be warranted if the data is mutable and
updated.

2 For the data to be useful, it has to be of high quality (accurate, sufficiently detailed, representative of things
in the world that our model cares about). And for supervised learning, the data has to be consistently and
accurately labeled—that is, if we have pictures of yarn and pictures of needles, we need to know which
ones are which so that we can use that fact to train a model to recognize these kinds of pictures. Without
high-quality data, we cannot expect high-quality results.

We’ll cover the production requirements of data and show that, just like models, data
in production has a lifecycle:

• Ingestion•
• Cleaning and data consistency•
• Enrichment and extension•
• Storage and replication•
• Use in training•
• Deletion•

The stability of data and metadata definitions as well as version control of those
definitions are crucial, and we’ll explain how to achieve them.1 We’ll also cover data
access constraints, privacy, and auditability concerns and show some approaches to
ensuring data provenance (where the data comes from) and data lineage (who has
been responsible for it since we got it). At the end of this chapter, we expect you
to have a complete but superficial understanding of the primary issues involved in
making the data processing chain reliable and manageable.

Data as Liability
Writing about ML almost universally suggests that data is an important asset in ML
systems. This perspective is sound: it’s certainly impossible to have an ML system
without data. As shown in Figure 2-1, it is often true that a simple (or even simplistic)
ML system with more (and higher-quality) training data can outperform a more
sophisticated system with less, or less representative, data.2

Organizations continue to scramble to collect as much data as possible, hoping
to find ways to turn that data into value. Indeed, many organizations have made
this into a profoundly successful business model. Think of Netflix, whose ability to
recommend high-quality shows and movies to customers was an early differentiator.
Netflix also reportedly used this data, once it got into the content production side
of the business, to figure out what shows to make for which audiences, based on a
detailed understanding of what people want to watch.
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Figure 2-1. Illustrative trade-offs of data size, model error rates, and risk of problems or
issues associated with the data

Of course, just like anything could be an asset, under the right (wrong) circumstan‐
ces, it can also be a liability. In the case of data, the most important thing to say is
that the acquisition, collection, and curation of data can expose areas of unexpected
nuance and complexity in the data. Not accounting for these can lead to potential
harm for us and for our users. All of these methods must be scoped appropriately
for the type of data—medical records probably require different treatment from job
history, for example. Of course, the best ways to curate data are high cost, so there’s
no free lunch here.

The intent of this short section is not to be the authoritative work on data collection,
storage, reporting, and deletion practices. That is well beyond the scope of this sec‐
tion and even of this book. The intent here is to enumerate enough of the complexity
to dissuade any readers from simply thinking “more data == better” or thinking
“this stuff is easy.” Let’s go through the lifecycle of data and see where some of the
challenges come from.

First, the data must be collected in compliance with applicable laws, which might
be based on where our organization is located, where the data originates, and on
organizational policies. We’ll definitely need to think this through (and talk to lawyers
for all of the jurisdictions we might be operating in). There are significant restrictions
on what counts as data about people, how to get permission to store the data, how to
store and retrieve the permission that was granted, whether we need to provide access
to the data to the people who provided it, and under what circumstances. These
restrictions may come from laws, industry practices, insurance regulations, corporate
governance policies, or any range of other sources. Examples of common restrictions
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in some jurisdictions include prohibition against collecting personally identifiable
information (PII) about an individual without their explicit written consent, along
with the requirement to delete that data upon request by the data subject. Whether
and how to collect data is not a technical question. It is a question of policy and
governance. (Parts of this topic are covered much more thoroughly in Chapter 6.)

If we are allowed to collect and store the data, it must be secured from external
access. Very few good things happen to organizations as a result of revealing their
users’ private data. Moreover, access must be restricted, even to employees. Employ‐
ees should not be able to view or change private user data without restriction and
without detailed logging of that.

Another approach to reducing data access and reducing the auditing surface is to
anonymize the data. One relatively simple and valuable option is to use pseudonym‐
ization. Here, private identifiers are replaced with others in a reversible fashion,
and reversing the pseudonymization requires access to an additional data or system.
This protects the data from casual inspection by engineers working on the pipeline
but permits discovery if we find that we need to reverse the anonymization. Pseudo‐
nymization also hopefully preserves the properties of data that are relevant to our
model. In other words, if it is important that a data field be similar in a certain way
under particular circumstances (think of postal codes, for example, which are prefix-
identical when they are in the same town or the same part of the same city), then
our pseudonymization might need to preserve that. While this level of protection
has value against casual inspection, it is important to treat pseudonymized data as
potentially just as risky as completely nonanonymized data. History is full of cases of
this data being used to expose the very real and private information of users (see the
following sidebar).

Example Applications for Different Levels of Anonymization
Different controls are required for data, depending on the sensitivity of the data that
is being accessed:

Raw data
The data contains no PII or we have extremely strict access controls in place and
the PII itself is critical (e.g., medical data).

Pseudonymized data
Some strict access controls are in place. Occasional, controlled manual inspection
is required, but the PII data itself is not relevant to the inspection (e.g., credit
card data with the prefix blanked or transformed, leaving only the final four
digits: XXXX-XX-1234—still a lot of data, but some reasonable protection from
casual inspection).
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3 The case of AOL search logs is the most famous such debacle; see “A Face Is Exposed for AOL Searcher No.
4417749” by Michael Barbaro and Tom Zeller Jr. This incident is also explained at Wikipedia’s “AOL search log
release” page.

Anonymized data
All other cases for which we collect PII but do not require it for troubleshooting
or model performance.

A better approach is permanently removing any direct connection between private
data about a person and the data that we use to train on. If we are able to permanently
remove any connection between the private data and the person, we substantially
reduce the risk of the data and increase the flexibility we have to handle it. This is,
of course, harder than it seems.3 Doing this in a way that’s not trivially reversible but
still valuable can be difficult. Although many good techniques exist, one common
basic idea is to combine collections of data to ensure that no reported piece of data
is tied to a unique identifier for any fewer than a certain number of real people. This
is the approach taken by many serious population research organizations, including,
notably, the United States Census Bureau. There are, however, many subtleties in
getting this right. Correct anonymization is a topic that is mostly beyond the scope of
this book, although we’ll refer to it.

Don’t Anonymize Yourself
Several very high-profile failures over the past several years should have made the
difficulties of anonymization clear. The work, in particular, of Dr. Latanya Sweeney
in Harvard’s government department is worth reading. Sweeney demonstrated with
ease that she could identify the health records of William Weld, then governor of
Massachusetts, although they were “anonymized,” simply by knowing his gender,
age, and zip code (which were freely available from voter records). Sweeney further
demonstrated that 87% of all people in the US could be uniquely identified via only
three pieces of information: gender, age, and zip code; see “Anonymized Data Really
Isn’t—and Here’s Why Not” by Nate Anderson for more details.

Similar work has shown that a browser user agent string combined with zip code
or several other kinds of information uniquely identifies humans. The moral of the
story is that anonymization is hard, and you will almost certainly have to develop
expertise in it yourself, or outsource it to people or platforms that do; it is a significant
specialization in and of itself. The topic of correct anonymization is closely aligned
with other mathematically complex topics like cryptography that are properly a
separate specialization.
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Finally, we will ultimately need to be able to delete data. We might do this at the
request of individual users, local laws, regulations like the European Union’s General
Data Protection Regulation, or GDPR, or in other cases where we no longer have
permission to store the data. It turns out that deleting data and having it actually be
deleted is surprisingly hard.

This has been true since at least the early MS-DOS days, when deleting a file
just removed the reference to it and not the actual data itself, meaning you could
reconstruct the file with sufficient determination and luck. Everything about today’s
computing environment makes deletion even harder than it was in those days, from
having to track down multiple copies of the data to metadata management. In most
distributed storage systems, data is divided into many pieces and stored across a col‐
lection of physical machines. Depending on the implementation, it may be practically
impossible to determine every durable storage device (hard disk drive or solid state
drive) that might have the data written on it.

It’s important to be certain that people want their data deleted without putting up
arbitrary barriers. One way to balance this is to impose a short delay before really
deleting the data. A user might be granted a few hours or even days after requesting
data be deleted to cancel that request. But at some point, once we’ve confirmed the
request is intended and legitimate, we will need to track down every copy of the data
and eliminate it. Depending on how it is stored, data structures, indices, and backups
may be reconstructed to make accessing nearby data as efficient and reliable as it
had been.

As with most things, the task of deleting data is made better by putting explicit
thought into it. If your system hasn’t had that much thought put in, you can use a
couple of workarounds. Here are two common optimizations:

Periodically rewrite the data
When there is a process that regenerates the data, we can take advantage of
the “don’t delete data immediately” recommendation noted previously to simply
schedule the “deleted” data to not be included the next time the data is rewritten.
This assumes that the period of data regeneration matches the expected and
acceptable delay in deletion. This also assumes that the rewrite of the data is
effective at actually deleting the data, which may well not be the case at all.

Encrypt all of the data and throw away some keys
A system designed in this way has some significant advantages. In particular, it
protects private data “at rest” (written to persistent storage). Deleting data is also
trivial: if we lose the key to a user’s data, we can no longer read that data. The
downsides are mostly avoidable but worth considering seriously: anyone employ‐
ing this strategy will need very, very reliable key-handling systems because if the
keys are lost, all of the data is lost. This can also make it difficult to reliably delete
a single key from every backup of the key system.
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The Data Sensitivity of ML Pipelines
The primary difference between ML pipelines and most data processing pipelines is
that ML pipelines are unusually sensitive to their input data compared to most other
data processing pipelines. All data processing pipelines are, in some sense, subject
to the correctness and volume of their input data, but ML pipelines are furthermore
sensitive to subtle changes in distribution of the data. A pipeline can easily go from
mostly right to significantly wrong simply by omitting a small fraction of the data,
provided that small fraction is not random, or is somehow not evenly sampled in the
range of characteristics our model is sensitive to.

An easy thought experiment here is to consider a real-world system like yarnit.ai
that somehow loses all of the data from a particular country, region, or language. For
example, if we drop all of the data from December 31 of a given year, we lose the
ability to detect New Year’s Eve shopping trends, which may be substantially different
from the surrounding days in December and January. In many of these cases, losing
a small amount of data that turns out to be systematically biased results in significant
confusion in the understanding and predictions of our models.

As a result of this sensitivity, the ability to aggregate, process, and monitor data,
rather than only the live systems, is critical to successfully managing ML data pipe‐
lines. We discuss monitoring data in some depth in Chapter 9, but here is a preview.
A key insight to monitoring data is the slicing, or division, of the data along various
axes (determining which axes are the best to slice the data is an important activity in
exploratory data analysis, or EDA, and is beyond the scope of this book). In a system
that is trying to track real-time activities, we might divide data in buckets of data
age: recent, one to two hours old, three to six hours old, etc. We might track which
buckets we are currently processing data from so that we can understand how far
behind we have gotten. But we can, and should, track various other histograms that
are relevant to our application. The ability to detect when all or almost all of a subset
of the data is gone will matter enormously.

For example, in our shopping site yarnit.ai, we may train on searches to try to predict
the best results for any given search (where “best” is “most likely to be purchased”—
we are in the selling business, after all!). We operate our site in multiple languages
in multiple markets. Let’s say that a widespread payments outage affects only our
Spanish language site, resulting in a drastically lower number of completed orders
from people searching in Spanish. A model whose job is to recommend products
for customers to buy will learn that Spanish-language results are significantly less
likely to result in purchases than results in other languages. The model will show
fewer results in Spanish and may even start showing results in other languages to
Spanish-speaking users. Of course, the model will not be able to “know” the reasons
for this change in behavior.
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This might result in a small decline in total purchases if our site is predominantly
a North American or European site, but a massive decline in the total number
of searches and purchases in Spanish. If we train on this data, our model will
probably have terrible results for Spanish-language searches. It might learn that
Spanish-language queries never buy anything (since this will essentially be true). The
model might start exhibiting exploratory behavior—if all of the Spanish language
results are equally terrible, then any result might be good, so the model will try to
find anything that Spanish-language searchers might actually buy. This will result in
terrible search results and lower sales once our Spanish site’s payment outage is over.
This is a pretty bad outcome. (For a more complete treatment of a similar problem,
see Chapter 11.)

The change in query volume might not be easily detectable at the gross query volume
level either, as the total queries in Spanish might be small compared to those in
other languages in total. We’ll talk about ways to monitor training pipelines and
detect these kinds of shifts in distribution in Chapter 9. This example is given just to
motivate the thought that ML pipelines really are somewhat more difficult to operate
reliably because of these kinds of subtle failure modes.

With these constraints in mind, let’s review the lifecycle of data in our system. We’ll
have to think about the data as under our care from the moment of its creation until
we delete it.

Phases of Data
Most teams rely on the platforms they use, including their data storage and process‐
ing platforms, to provide most of what they need. YarnIt is not a large organization,
but we’ll still involve staff responsible for business management, data engineering,
and operations to help us understand and meet the requirements here. We are lucky
enough to have SREs who will address reliability concerns related to the storage and
processing of data.

The data management stage is fundamentally about transforming the data we have
into a format and storage organization suitable for using it for later stages of the
process. During this process, we will also probably apply a range of data transforma‐
tions that are model specific (or at least model-domain specific) in order to prepare
the data for training. Our next operations on the data will be to train ML models,
anonymize certain sensitive items of data, and delete data when we no longer need it
or are asked to do so. To prepare for these operations on the data, we will continue to
take input from the business leaders to answer questions about our primary use cases
for the data, along with possible areas for future exploration.

As with most of the sections of this book, deep familiarity with ML is not required or
sometimes even desirable in order to design and run reliable ML systems. However,
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a basic understanding of model training does directly inform what we do with
data as we get it ready. Data management in modern ML environments consists of
multiple phases before feeding the data into model-training pipelines, as illustrated in
Figure 2-2:

• Creation•
• Ingestion•
• Processing (which includes validation, cleaning, and enrichment)•
• Post-processing (which includes data management, storage, and analysis)•

Figure 2-2. ML data management phases

Creation
It may seem either odd or obvious to state, but ML training data comes from some‐
where. Perhaps your dataset comes from elsewhere, such as a colleague in another
department or from an academic project, and was created there. But datasets are all
created at some point via some process. Here we are referring to data creation as
the process of generating or capturing the data in some data storage system but not
our data storage system. Examples here include logs from serving systems, large col‐
lections of images captured from an event, diagnostic data from medical procedures,
and so on. Implicit in this process is that we will want to design new systems and
adapt existing systems to generate more data than we might otherwise, so that our
ML systems have something to work with.

Some datasets work well when they are static (or at least don’t change quickly), and
others are useful only when frequently updated. A photo-recognition dataset, for
example, may be usable for many months, as long as it is suitably representative of
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the types of photos we would like to recognize with our model. On the other hand,
if the outside photos represent only winter environments from a temperate climate,
the distribution of the photo set will be significantly different from the expected set
of images we need to recognize. It will therefore not be useful as the environment
warms during spring in those places. Likewise, if we’re trying to recognize fraud
in transactions at yarnit.ai automatically, we will want to be training our model
continuously on recent transactions along with information about whether those
transactions were fraudulent. Otherwise, someone might come up with a neat idea of
how to steal all of our knitting supplies that is hard to detect, and we might never
teach our model how to detect it.

The kinds of data we collect and the data artifacts we create can be unstructured,
semi-structured, or very well structured (Figure 2-3).

Structured data is quantitative with a predefined data model/schema, highly organ‐
ized, and stored in tabular formats like spreadsheets or relational databases. Names,
addresses, geolocation, dates, and payment information are all common examples of
structured data. Since it is well formatted, structured data can be easily processed by
relatively simple code using obvious heuristics.

On the other hand, unstructured data is qualitative without a standard data model/
schema, so it cannot be processed and analyzed using conventional data methods and
tools. Examples of unstructured data include email body text, product descriptions,
web text, and video and audio files. Semi-structured data doesn’t have a specific data
model/schema but includes tags and semantic markers and so is a type of structured
data that lies between structured and unstructured data. Examples of semi-structured
data include email, which can be searched by Sender, Receiver, Inbox, Sent, Drafts,
etc., and social media content that may be categorized as Public, Private, and Friends,
as well as by user-maintained labels such as hashtags. The character of the internal
structure of the data will have significant implications for the way we process, store,
and use it.

Figure 2-3. ML training data categories
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4 A complementary approach to Model Cards for datasets is known as Data Cards; see the Data Cards Playbook
site.

5 See “Learning to Compose Domain-Specific Transformations for Data Augmentation” by Alexander J. Ratner
et al. for more details.

Although bias in models comes from the structure of the model as well as the
data, the circumstances of data creation have profound implications for correctness,
fairness, and ethics. Though we treat this in considerably more detail in Chapters 5
and 6, the primary recommendation we can make here is that you have some kind
of process to establish whether your model is biased. We can do this in numerous
ways and the simplest is probably the Model Cards approach, but having any process
that does this and having it be organizationally accepted is much better than not
having such a process.4 It’s definitely the first thing to do as we begin to address ethics
and fairness considerations in our ML system. You could relatively easily combine
the effort to detect bias into a data provenance or data lifecycle meeting or tracking
process, for example. But every organization doing ML should establish some kind of
process, and review it as part of continuous improvement.

Recall, though, that bias comes from many sources and shows up at many stages
through the process. There is no guaranteed way to ensure data fairness. One useful
precursor to success here is to have an inclusive company culture full of people
from all kinds of backgrounds with differing and creative points of view. There’s
good evidence that people with very different backgrounds and perspectives, while
working in an environment of trust and respect, produce much better and more
useful ideas than teams that are all similar. This can be part of a robust defense
against the kinds of bias that slips through the checks described previously. It will not,
however, prevent all bad outcomes without process and tooling, just as no human
effort prevents all bad outcomes without systems help.

One final note on dataset creation, or rather, dataset augmentation: if we have a small
amount of training data but not enough to train a high-quality model on, we may
need to augment that data. Tools are available that can do so. For example, Snorkel
provides a programmatic interface for taking a small number of data points and
permuting them into a larger number of more varied data points, essentially making
up imaginary but statistically valid training data. This is one good place to start, as it
allows us to easily expand a small dataset into a large one. Although it might appear
that these programmatically created datasets are somehow less valuable or less useful,
there is good evidence that this approach can yield extremely good results at low cost,
although it does need to be used with caution.5
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Ingestion
The data needs to be received into the system and written to storage for further
processing. At this stage, a filtering and selection step necessarily occurs. Not all data
created may be ingested or collected, because we don’t want or need to.

We may filter data by type at this stage (data fields or elements that we do not believe
will be useful for our model). We may also simply sample at this stage if we have so
much data we do not believe we can afford to process all of it, as ML training and
other data processing is often extremely computationally expensive. Sampling data
can be an effective way to save money on intermediate processing and training costs,
but it is important to measure the quality cost of sampling and compare that to the
savings. Data should also be sampled proportional to the volume/rate per time period
or per other slice in the data we care about. This will avoid missing detail during
bursty periods. However, sampling is likely to occasionally lose some detail for some
events. This is unavoidable.

In general, ML training systems perform better with more data. Pedants will imme‐
diately think of many exceptions, but this is a useful starting point. Therefore, any
reduction in data may well impact quality at the same time as reducing costs.

Depending on the volume of data and the complexity of our service, the ingestion
phase may be as simple as “dump some files in that directory over there” or as
sophisticated as a remote procedure call (RPC) endpoint that receives specifically
formatted files and confirms a reference to the data bundle that was received so that
its progress through the system can be tracked. In most cases, we will want to provide
data ingestion via at least a simple API because this provides an obvious place to
acknowledge receipt/storage of the data, log the ingestion, and apply any governance
policies about the data.

Reliability concerns during the ingestion phase typically focus on correctness and
throughput. Correctness is the general property that the data is properly read and
written in the correct place without being unnecessarily skipped or misplaced. While
the idea of misplacing data sounds amusing, it absolutely happens, and it’s easy to see
how it could. A date- or time-oriented bucketing system in storage combined with an
off-by-one error in the ingestion process could end up with every day’s data stored
in the previous day’s directory. Monitoring the existence and condition of data before
and during ingestion is the most difficult part of the data pipeline.

Processing
Once we have successfully loaded (or ingested) the data into a reasonable feature
storage system, most data scientists or modelers will go through a set of common
operations to make the data ready for training. These operations—validation, clean‐
ing and ensuring data consistency, and enriching and extending—are detailed next.
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Validation
No matter how efficient and powerful our ML models are, they can never do what
we want them to do with bad data. In production, a common reason for errors in
the data is bugs in the code that is collecting the data in the first place. Data ingested
from external sources might have a lot of errors even though a well-defined schema
exists for each source (for example, having a float value for an integer field). So,
it is extremely important to validate the incoming data, especially when there is a
well-defined schema and/or an ability to compare against the last-known valid feed.

Validation is performed against a common definition of the field—i.e., is it what
we expect it to be? To perform this validation, we need to both store and be able
to reference those standard definitions. Using a comprehensive metadata system to
manage the consistency and track the definition of fields is critical to maintaining an
accurate representation of the data. This is covered in much more detail in Chapter 4.

Cleaning and ensuring data consistency
Even with a decent validation framework in place, most data is still messy. It may have
missing fields, duplicates, misclassifications, or even encoding errors. The more data
we have, the more likely that cleaning and data consistency will be its own stage of
processing.

This might seem frustrating and unnecessary: building an entire system simply to
check the data sounds a bit overblown to many people doing so for the first time.
The reality is that our ML pipeline will assuredly have code whose job is to clean
the data. We can either put this code in a single place, where it can be reviewed and
improved, or put aspects of it throughout the training pipeline. That second strategy
makes for extremely fragile pipelines as the assumptions about data correctness grow
but our ability to ensure that they are met does not. Moreover, as we improve some
of the code for validating and correcting data, we might neglect to implement those
improvements in all of the many places where we are performing that work. Or
worse, we can be counterproductive. For example, we can “correct” the same data
multiple times in ways that eliminate the original information in the data. We can also
have potential race conditions whereby different parts of the process are cleaning or
making consistent the same data differently.
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Another set of data consistency tasks during this portion is the normalization of data.
Normalization generally refers to a set of techniques used to transform the input
data into a similar scale, which is useful for methods like deep learning that rely
on gradient descent or similar numerical optimization methods for training. Some
standard techniques here, depicted in Figure 2-4, include the following:

Scaling to a range
Mapping all of the X values of the data to a fixed range, often 0 to 1, but
sometimes (for something like height or age) other values that represent the
common min and max values.

Clipping
Cutting off the maximum values of the data. This is useful when the dataset has a
small number of extreme outliers.

Log scaling
x’ = log(x). This is useful when the data has a power law distribution, with a small
number of very large values and a large number of very small values.

Z-score normalization
Maps the variable to the number of standard deviations from the mean.

It is important to note that each of these techniques can be dangerous if any of the
range or distribution or means are calculated on a set of test data with different
properties than the dataset where it is later applied.

A final related and common technique is that of putting the data into buckets: we map
a range of data into a much smaller set of groups that represent the same range. For
example, we could measure age in years, but when training we could bucket on deca‐
des so that everyone who is 30 to 39 gets put into the “30s” bucket. Bucketing can be
the source of many difficult-to-detect errors. Imagine, for example, that one system
buckets age on decade boundaries and another on five-year boundaries. When we
bucket the data, we have to give serious consideration to preserving the existing data
and writing out a new, correctly formatted field for each record. If (when?) we change
the bucketing strategy, we’ll be glad we did; otherwise, it will be impossible to switch.
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Figure 2-4. Normalization techniques as presented in Google Developers Data Prep
course

Enriching and extending
In this stage, we combine our data with data from other sources. The most common
and fundamental way to extend the data is through labeling. This process identifies
a given event or record by bringing in confirmation from an outside source of data
(sometimes a human). Labeled data is the key driver of all supervised ML and is
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6 There is very little reason to believe this is true, but it’s vaguely plausible and moderately amusing. If anyone
implements “source temperature” as a feature and finds it to be valuable, please contact the authors for an
autographed book.

often one of the most challenging and expensive parts of the whole ML process.
Without a sufficient volume of high-quality labeled data, supervised learning won’t
work. (Labeling and labeling systems are covered extensively in Chapter 4.)

But labeling is only one way to extend data. We might use many external data sources
to extend our training data. Let’s say we believe for some reason that the temperature
at a person’s location will predict what they will buy.6 We can take our logs of searches
on the yarnit.ai site and add the temperature at the approximate geolocation of the
user at the time they were visiting the web page. We could do this by finding or
creating a temperature history service or dataset. This will allow us to train a model
based on source temperature as a feature and see what kind of predictions we can
make with it. This is probably a terrible idea, but it is not completely impractical.

Storage
Finally, we need to store the data somewhere. How and where we store the data is
mostly driven by how we tend to use it, which is really a set of questions about
training and serving systems. We go into this considerably more in Chapter 4, but
there are two predominant concerns here: efficiency of storage and metadata.

The efficiency of a storage system is driven by access patterns that are influenced by
the model structure, team structure, and training process. To make sensible choices
about our storage system, here are some basic questions we need to answer:

• Are we training models once over this data or many times?•
• Will each model read all of the data or only parts of it? If only some of the data•

will be read, is the subset being read selected by the type of data (some fields and
not others) or by randomly sampling the data (30% of all records)?

• In particular, do related teams read slightly different subsets of the fields in the•
data?

• Do we need to read the data in any particular order?•

On the subject of reuse of data, it turns out that almost all data is read multiple times
and the storage system should be built for that, even if model owners assert that they
will train only one model on the data once. Why? Model development is inherently
an iterative process. An ML engineer makes a model (reading the data necessary to
do so), measures how well the model performs at its designed task, and then deploys
it. Then they get another idea: an idea of how to improve the model in some way.
Before you know it, they’re back rereading the same data to try out their new idea.
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7 Most common, large data storage and analysis services from large cloud providers are column oriented.
Google Cloud BigQuery, Amazon RedShift, and Microsoft Azure SQL Data Warehouse are all column
oriented, as is the main data store for data services provider Snowflake. Both PostgreSQL and MariaDB Server
have column-oriented configuration options as well.

Every system we build, from data to training all the way to serving, should be built
with the assumption that model developers will semi-continuously retrain the same
models in order to improve them. Indeed, as they do so, they might read different
subsets of the data each time.

Given this, a column-oriented storage scheme with one column per feature is a
common design architecture, especially for models training on structured data.7 Most
readers will be familiar with row-oriented storage, in which every fetch of data from
the database retrieves all of the fields of a matching row. This is an appropriate archi‐
tecture for collections of applications that all use most or all of the data—in other
words, a collection of very similar applications. Column-oriented data facilitates the
retrieval of only a subset of fields. This is much more useful for a collection of
applications (ML training pipelines in this case) that each use a given subset of
the data. In other words, column-oriented data storage allows different models that
efficiently read different subsets of features and do so without reading in the whole
row of data every time. The more data we collect in one place, the more likely it is
that we will have different models using very different subsets of that data.

This approach is way too complicated for some training systems, however. As an
example, if we’re training on a lot of images that aren’t preprocessed, we really don’t
need to have a column-oriented storage system—we can just read image files from
a directory or a bucket. However, say we are reading something more structured,
such as transaction data logs with fields like timestamp, source, referrer, amount,
item, shipping method, and payment mechanism. Then, assuming that some models
will use some of those features and others will use others will motivate us to use a
column-oriented structure.

Metadata helps humans interact with the storage. When multiple people work on
building models on the same data (or when the same person works on this over
time), metadata about the stored features provides huge value. It is the roadmap
to understanding how the last model was put together and how we might want to
put together the model. Metadata for storage systems is one of the more commonly
undervalued parts of an ML system.

This section should clarify that our data management system is primarily motivated
by two factors:

The business purpose to which we intend to put the data
What problem are we trying to solve? What is the value of that problem to our
organization or our customers?
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8 Data scientists, data analysts, research scientists, and applied scientists use various data visualization tools
and techniques including infographics, heatmaps, fever charts, area charts, and histograms. For more insights,
refer to Wikipedia’s “Data and information visualization” page.

The model structure and strategy
What models do we plan to build? How are they put together? How often are
they refreshed? How many of them are there? How similar to one another are
they?

Every choice we make about our data management system is constrained by, and
constrains, these two factors. And if data management is about how and why we write
data, ML training pipelines are about how and why we read it.

Management
Typically, data storage systems implement credential-based access controls to restrict
unauthorized users from accessing the data. Such simple techniques can serve only
a basic ML implementation. In more advanced scenarios, especially when the data
contains confidential information, we need to have more granular data access man‐
agement methodologies in place. For example, we might want to allow only model
developers to access the features that they directly work on or restrict their access
to a subset of the data in some other way (perhaps only recent data). Alternatively,
we might anonymize or pseudononymize the data either at rest or when it is being
accessed. Finally, we might allow production engineers to access all of the data, but
only after demonstrating that they need to during an incident and having their access
carefully logged and monitored by a separate team. (Some interesting aspects of this
are discussed in Chapter 11.)

SREs can configure data access restrictions on the storage system in production to
allow data scientists to read data securely via authorized networks like virtual private
networks (VPNs), implement audit logging to track which users and training jobs are
accessing what data, generate reports, and monitor usage patterns. Business owners
and/or product managers can define user permissions based on the use cases. We
may need to generate and use different kinds of metadata for these dimensions of
heterogeneity to maximize our ability to access and modify the data for subsequent
phases.

Analysis and Visualization
Data analysis and visualization is the process of transforming large amounts of data
into an easy-to-navigate representation using statistical and/or graphical techniques
and tools.8 It is an essential task of ML architectures and knowledge-discovery techni‐
ques to make data less confusing and more accessible. It is not enough just to show a
pie chart or bar graph. We need to provide the human reader an explanation of what
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each record in the dataset means, how it is linked with the records in other datasets,
and whether it is clean and safe to use for training models. It is practically impossible
for data scientists to look at large datasets without well-defined and high-performant
data visualization tools and processes.

Data Reliability
Because our data processing system needs to work, the data must have several charac‐
teristics as it traverses the system. Articulating these characteristics can be controver‐
sial. To some people, they seem obvious, and to others, they seem impossible to really
guarantee. Both of these perspectives miss the point.

The intent of articulating a set of invariants that should always be true about our data
is that it permits us all to notice when they are not true, or when a system cannot
properly guarantee that they will be true. This permits us to take action to do better
in the future. Note that the topic of reliability, even of data management systems,
is extremely broad and cannot be covered completely here; for much more detail,
see Site Reliability Engineering: How Google Runs Production Systems, edited by Betsy
Beyer et al. (O’Reilly, 2016).

This section covers just the basics of making sure that the data is not lost (durability),
is the same for all copies (consistency), and is tracked carefully as it changes over
time (version control). We also cover how to think about how fast the data can be
read (performance) and how often it’s not ready to be read (availability). A quick
overview of these concepts should prepare us to focus on the right areas.

Durability
When spelling out the requirements for storage systems, durability is the most often
overlooked because it is assumed. Durability is the property of the storage system
having your data, and having not lost, deleted, overwritten, or corrupted it. We
definitely want that property with a very high probability.

Durability is normally expressed as an annual percentage of bytes or blocks that are
not lost irretrievably. Common values for good storage systems here are 11 or 12
nines, which can also be expressed as “99.999999999% or more of bytes stored are
not lost.” While this may be the offering of the raw underlying storage system, our
guarantees might be quite a bit more modest because we’re writing software that
interacts with the storage system.

One important note is that some systems have extremely durable data, in the sense
that nothing is lost, but do have failure modes leaving some data inaccessible for
extremely long periods of time. This might include cases where the data needs to
be recovered from another slower storage system (say, a tape drive) or copied from
off-site over a slow network connection. If this is raw data and is important to the
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model, you may have to recover it. But for data that is somehow derived from existing
raw data, reliability engineers will want to consider whether it might be easier to
simply re-create the data rather than restore it.

For an ML storage system with many data transformations, we need to be careful
about how those transformations are written and monitored. We should log data
transformations and, if we can afford to, store copies of the data pre- and post-
transformation. The hardest place to keep track of the data is on ingestion, when the
data goes from an unmanaged to a managed state. Since we recommend using an API
for ingestion, this provides a clear place to ensure that the data is stored, to log the
transaction, and to acknowledge the receipt of the data. If the data is not cleanly and
durably received, the sending system can, of course, retry the send operation while
the data is still available.

At each stage of data transformation, if we can afford it, we should store pre-
and post-transformation copies of the data. We should monitor throughput of the
transformations as well and expected data size changes. For example, if we sample
the data by 30%, the post-transformation data should obviously be 30% the size of
the pre-transformation data, unless an error occurs. On the other hand, if we’re trans‐
forming a float into an integer by bucketing, depending on the data representation,
we could expect the resulting data size to remain unchanged. If it’s much bigger or
much smaller, we almost certainly have a problem.

Consistency
We may want to guarantee that, as we access data from multiple computers, the
data is the same with every read; this is the property of consistency. ML systems
of any scale are usually distributed. Most of the processing that we are doing is
fundamentally parallelizable, and assuming that we’ll be using clusters of machines
from the beginning is generally worthwhile. This means that the storage system
will be available via a networking protocol from other computers, and introduces
challenges for reliability. Significantly, it introduces the fact that different versions of
the same data might be available at the same time. It is difficult to guarantee that data
is replicated, available, and consistent everywhere.

Whether the model-training system cares about consistency is actually a property of
the model and the data. Not all training systems are sensitive to inconsistency in the
data. For that matter, not all data is sensitive to inconsistencies. One way to think
about this is to consider how dense or sparse the data is. Data is sparse when the
information that each piece represents is rare. Data is dense when the information
that each piece of data represents is common. Data is sparse when the dataset has a
lot of zero values. So if yarnit.ai has 10 popular yarns that represent almost all of what
we sell, the data for any given purchase of one of those yarns is dense—it’s unlikely
to teach us very much that’s new. If a single purchase of a popular yarn is readable
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in one copy of our storage system but not another, the model will be essentially
unaffected. On the other hand, if 90% of our purchases are for different yarns, every
single purchase is important. If one part of our training system sees a purchase of a
particular yarn and another does not, we might produce an incoherent model with
respect to that particular yarn, or yarns that our model represents as similar to that
yarn. Under some circumstances, consistency is difficult to guarantee, but often if we
can wait somewhat longer for the data to arrive and sync, we can easily guarantee this
property.

We can eliminate consistency concerns in the data layer in two straightforward ways.
The first is to build models that are resilient to inconsistent data. Just as with other
data processing systems, ML systems offer trade-offs. If we can tolerate inconsistent
data, especially when the data is recently written, we might be able to train our
models significantly faster and operate our storage system more cheaply. The cost, in
this case, is flexibility and guarantees. If we go down this path, we limit ourselves to
indefinitely operating the storage system with these guarantees and we can train only
models that are satisfied with this property. That’s one choice.

The second choice is to operate a training system that provides consistency guaran‐
tees. The most common way to do that for a replicated storage system is for the
system itself to provide information about what data is completely and consistently
replicated. Systems that read the data can consume this field and choose to train
only on the data that is fully replicated. This is often more complicated for the
storage system since we need to provide an API to replication status. It may also
be significantly more expensive or slower. If we want to use the data quickly after
ingestion and transformation, we may need to have lots of resources provisioned for
networking (to copy the data) and storage I/O capacity (to write the copies).

Thinking through consistency requirements is a strategic decision. It has long-term
implications for balancing costs and capabilities and should be made with both ML
engineers and organizational decision makers involved.

Version Control
ML dataset versioning is, in many ways, similar to traditional data and/or source code
versioning used to bookmark the state of the data so that we can apply a specific
version of the dataset for future experiments. Versioning becomes important when
new data is available for retraining and when we’re planning to implement different
data preparation or feature engineering techniques. In production environments, ML
experts deal with a large volume of datasets, files, and metrics to carry out day-to-day
operations. The varying versions of these artifacts need to be tracked and managed
as experiments are performed on them in multiple iterations. Version control is a
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9 Some readers might read “version control” and think “Git.” A content-indexed software version control
system like Git is not really appropriate or necessary to track versions of ML data. We are not making
thousands of small and structured changes, but rather generally adding and deleting whole files or sections.
The version control we need tracks what the data refers to, who created/updated it, and when it was created.
Many ML modeling and training systems include some version control. MLflow is one example.

10 Data durability, discussed previously in “Durability” on page 33, is often included as a key concept in data
integrity. Since this entire chapter is about data management, durability has been grouped with reliability
concepts, and integrity here refers to properties we can assert about the data, beyond its mere existence and
accessibility.

great practice for managing numerous datasets, ML models, and files in addition to
keeping a record of multiple iterations—i.e., when, why, and what was altered.9

Performance
The storage system needs fast-enough write throughput to rapidly ingest the data and
not slow transformations. The system needs fast-enough read bandwidth to enable
us to rapidly train models using the access patterns that fit our modeling behavior.
It is worth noting that the cost of slow read performance can be quite significant for
the simple reason that ML training often uses relatively expensive compute resources
(GPUs or high-end CPUs). When these processors are stalled waiting on data to
train on, they are simply burning cycles and time with no useful work done. Many
organizations believe they cannot afford to invest in their storage system, when they
actually cannot afford not to.

Availability
The data we write needs to be there when we read it. Availability is, in some ways,
the product of durability, consistency, and performance. If the data is in our storage
system and is consistently replicated, and we are able to read it with reasonable
performance, then the data will count as available.

Data Integrity
Data that is valuable should be treated as such. This means respecting provenance,
security, and integrity.10 Our data management system will need to be designed for
these properties from the beginning to be able to make appropriate guarantees about
the kind of access controls and other data integrity we can offer.

Data integrity has three other big themes in addition to security and integrity:
privacy, policy compliance, and fairness. It is worth taking a moment to consider
these topics from a general point of view. We need to ensure that we understand the
requirements presented by these areas so that we can ensure that the storage system
and API that we build offer the kinds of guarantees we require.
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11 One useful summary can be found in the Databricks article “Best Practices: GDPR and CCPA Compliance
Using Delta Lake,” especially the section on pseudonymization.

Security
Valuable ML data often begins its life as private data. Some organizations choose to
build processes to simply exclude all PII from their datastore. This is a good idea
for several reasons. It simplifies access control problems. It eliminates the operational
burden of data deletion requests.11 Finally, it removes the risk of storing private
information. As we’ve discussed, data should properly be considered a liability as
much as an asset.

We may have successfully excluded PII from the ML datastore. But we probably
shouldn’t count on that for two reasons. On the one hand, we may not have excluded
PII as effectively as we think we have. As previously mentioned, it is notoriously
difficult to identify PII without a thoughtful analysis so unless there is careful, time-
consuming, human review of all data that is added to the feature store, it is extremely
likely that some of the data in combination with other data does contain PII. On
the other hand, for many organizations, it may simply not be feasible to reasonably
exclude all PII from the datastore. Such organizations are obliged to strongly guard
their datastore as a result.

Beyond concerns about PII, teams will likely develop particular uses for particular
kinds of data. Reasonable use of the datastore will restrict access to certain data to
the team most likely to need and use that data. Thoughtful restriction of access will
actually increase productivity if model developers can easily access (and only access)
the data they are most likely to use to build models.

In all cases, systems engineers should track metadata about which development teams
build which models and which models depend on which features in the feature store
—effectively an audit trail. This metadata is useful, if not required, for operational
and security-related purposes.

Privacy
When ML data is about individuals, the storage system will need to have privacy-
preserving characteristics. One of the fastest ways to transform data from an asset to a
liability is by leaking private information about customers or partners.

We can make two architecturally different choices about dealing with private data:
eliminate it or lock it down. To the extent that we can still get excellent results,
eliminating private data is an extremely sound strategy. If we prevent PII data from
ever being stored in the data storage system, we eliminate most of the risk of holding
private data. This may be difficult—not only because it is not always easy to recognize
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private data, but also because it’s not always possible to get great results without
private data.

Privacy Choices for Recommendations at YarnIt
Let’s think about a recommendation or discovery system for YarnIt. The general idea
is that we would like to show customers items that they might be interested in buying
at various stages of their visit to the yarnit.ai website. That might include when
they land on the page, when they search for a type of yarn or a brand of knitting
needle, when they put something into their cart, or when they check out. Ideally,
we will present them with suggestions that they find appealing. So, what pieces of
information would we need as inputs to our system to identify products they might
also consider?

One of the time-honored approaches is “people who bought X also bought Y.” It
makes sense and allows us to make reasonable recommendations for a wide set of
products for which there is commonality or homogeneity among the customers. If
everyone who buys a particular type of mohair yarn also buys a specific type of nee‐
dles, we should be able to recommend them with no private information at all about
the individual user right now. But if there is some variety among our customers,
things get more interesting.

For example, what if one customer is considerably more or less price sensitive than
other customers? If they have a much smaller budget than the typical mohair yarn
purchaser, they may choose not to purchase additional needles, or may buy them only
below a certain price. Or what if the system knows that this customer had already
purchased those needles in a previous transaction? In that case, recommending more
of them is probably a waste of screen space and precious attention. We should
recommend things we have reason to predict the customer will actually be interested
in buying.

To make those kinds of recommendations, however, we need private data. Specifically,
we need individual users’ purchase histories. With that data, we can easily determine
things like estimated budget and types of items previously purchased, including
specific items already purchased. If we decide that our models can achieve their goals
only by having access to private data, we will need to have a serious conversation
about the architecture of storing, using, and eventually deleting that private data. The
most thorough structural approach generally requires creating per user datastores
that are encrypted at rest and unlocked by a key under control of only the customer.
This is most common when handling other organizations’ data and less common
for individuals running their own training system. Additionally, using data like this,
combined with general datastores with data from multiple users, requires federated
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12 See “Federated Learning: Collaborative Machine Learning Without Centralized Training Data” by Brendan
McMahan and Daniel Ramage for a general overview and reasonable links to the topic as it was in 2017.
Federated learning has, of course, continued to evolve since then.

learning—an advanced topic that’s beyond the scope of this book.12 (See Figure 2-5
for a list of the types of data and access control implications.)

Figure 2-5. Choices and processing as data moves through an ML system

Given all of this complexity, it’s substantially better and easier to anonymize data
as we ingest it. As previously mentioned, the topic of anonymization is technically
complex, but everyone building an ML system needs to know two key facts:

Anonymization is hard
It’s a topic people study and develop expertise on. Don’t try to just muddle
through. Take it seriously and do it right.

Anonymization is context dependent
There is no guaranteed way to anonymize data without knowing what other data
exists and how the two bits of data relate to each other.

Anonymization is difficult but not at all impossible, and when done properly, it
avoids a host of other problems. Note that doing so durably will require periodic
review to ensure that current anonymization still matches the assumptions made
about the data and access permissions when it was implemented, as well as a review
every time new data sources are added to ensure that connections among data
sources do not undermine anonymization. This topic is covered more extensively in
Chapter 6.
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Policy and Compliance
Policy and compliance typically flow from requirements originating outside your
organization. In some cases “outside the organization” actually means a boss or a
lawyer working for YarnIt but implementing an external legal requirement of some
kind, and in other cases it means a national government directly intervening. These
requirements often have painful and powerful reasons behind them, but these back‐
stories are usually not obvious when looking at the requirements themselves.

Here’s an annoying but powerful example: European regulations about cookie con‐
sent in browsers often seem overbearing, intrusive, or silly to web users, both Euro‐
pean and non-European. The idea that websites should get explicit consent to store
an identifier on the user’s machine might appear unnecessary. But anyone who
understands the privacy-violating power of the third-party ad cookie can attest that a
really strong rationale lies behind at least some restrictions on cookies. While the “ask
every user for every website” approach probably isn’t the most elegant and scalable, it
is much more understandable when we know more about how these cookies can be
used and how difficult it is to protect against their bad usage.

Policy and compliance requirements for data storage should be taken seriously. But
it’s a mistake to read the letter of a requirement or standard without understanding
the intent behind it. Often, whole industries of consultants have developed difficult
compliance practices when a simple approach might also be in compliance.

Anonymization, as mentioned previously, is one potential compliance shortcut. If pri‐
vate data requires special treatment, there may be a way to avoid those requirements
simply by determining (and documenting) that we are not storing any private data.

There are two other things to note about policy and governance requirements: juris‐
dictions and reporting.

Jurisdictional rules
The world is increasingly filled with governments that assert control over the han‐
dling of data stored in or sourced from their geographic location. While this seems
reasonable in principle, it does not map at all cleanly onto the way that the world has
been building networked computer systems for the past few decades. It may not even
be possible for some cloud providers to ensure that data generated in one country is
processed in that country. YarnIt plans to sell globally, even though we may launch
with only a few supported countries to start. So we will have to think carefully about
what data storage and processing requirements we need to comply with.
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For larger organizations, one choice of jurisdiction is more important than any other:
the host country of the corporate headquarters. This matters because the government
of that country is able to exert authority over data residing in any other country.
Picking the country of incorporation can have profound implications to our data
management system, but it’s not a factor most people carefully consider. They should.

Reporting requirements
Remember that compliance work entails reporting. In many cases, reporting can be
integrated into the way we monitor the service. Compliance requirements are SLOs,
and reporting includes the SLIs that establish the status of our implementation with
respect to those compliance SLOs. Thinking of it this way normalizes this work
alongside the rest of the implementation and reliability work we need to do.

Conclusion
This has been a rapid and superficial introduction (though it probably doesn’t feel
like that) to thinking about data systems for ML. At this point, you may not be
comfortable building a complete system for data ingestion and processing, but the
basic elements of such a system should be clear. More importantly, you should be able
to identify where some of the biggest risks and pitfalls lie. To start making concrete
progress on this, most readers will want to divide their efforts into the following
areas:

Policy and governance
Many organizations start work on ML from the product or engineering groups.
As we have highlighted, however, having a consistent set of policy decisions and a
consistent approach to governance will be critical in the long run. Organizations
that haven’t yet started on this effort should do so immediately. Chapter 6 is a
good place to start.

To have the most impact in this area, you should identify the likely biggest
problems or gaps and address them first. Perfection is not possible, given the
current state of our understanding of the risks of using ML incorrectly and
the tools available. But reducing instances of egregious violations absolutely is
possible and is a reasonable goal.

Data sciences and software infrastructure
If we have started using ML at all, it is likely that our data science teams are
already building bespoke data transformation pipelines in various places around
the organization. Cleaning, normalizing, and transforming the data are normal
operations that are required to do ML. To avoid future technical ML debt, we
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13 The technical debt in ML systems is often fairly different from what we see in other software systems. One
paper that explains this in detail is “Hidden Technical Debt in Machine Learning Systems” by D. Sculley (a
coauthor of this book) et al.

should start building software infrastructure to centralize these transformation
pipelines as soon as is practical.13

Teams that have already solved their own problems may be resistant to this
centralization. However, by operating data transformation as a service, it is some‐
times possible to entice all new users and even some existing users to transfer
allegiance to the centralized system. Over time, we should try to consolidate data
transformations in a single, well managed place.

Infrastructure
We obviously need significant data storage and processing infrastructure to man‐
age ML data well. The biggest element here is the feature storage system (often
simply referred to as the feature store). We discuss the useful elements of a feature
store in detail in Chapter 4.
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CHAPTER 3

Basic Introduction to Models

Most of this book is about managing ML systems and production-level ML pipelines.
This involves work that is quite different from the work often performed by many
data scientists and ML researchers, who try to spend their days developing new
predictive models and methods that can squeeze out another percentage point of
accuracy. Instead, in this book, we focus on ensuring that a system that includes
an ML model exhibits consistent, robust, and reliable system-level behavior. In some
ways, this system-level behavior is independent of the actual model type, how good
the model is, or other solely model-related considerations. Still, in certain key situa‐
tions, it is not independent of these considerations. Our goal in this chapter is to give
you enough background to understand which situation you are in when the alarms
start to go off or the pagers start to fire for your production system.

We will say at the outset that our goal here is not to teach you everything about
how to build ML models, which models might be good for what problems, or how
to become a data scientist. That would be a book (or more) all to itself, and many
excellent texts and online courses cover these aspects.

Instead of going too deep into the minutia, in this chapter our goal is to give a quick
reminder about what ML models are and how they work. We’ll also provide some
key questions that machine learning operations (MLOps) folks should ask about the
models in their system so they can understand the kinds of problems to plan for
appropriately.

What Is a Model?
In mathematics or science, the word model refers to a rule or guideline, often expres‐
sible in math or code, that helps take inputs and give predictions about the way that
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the world might work in the future. For example, here is a famous model you might
recognize:

E = mc2

This is a lovely little model that tells you how much energy (E) you are likely to
get if you convert a given input amount of mass (m) into something super hot and
explosive, and the constant c2 tells you that you get really quite a lot of E out for even
a little bit of m. This model was created by a smart person who thought carefully for a
long time and holds up well in various settings. It doesn’t require a lot of maintenance
and generalizes beautifully to a huge range of settings, even those never envisaged
when it was first created.

The models we typically deal with in ML are similar in some ways. They take
inputs and give outputs that are often thought of as predictions, using rules that are
expressible in mathematical notation or code. These predictions could represent the
physical world, like “What’s the probability that it will rain tomorrow in Seattle?” Or
they could represent quantities, like “How many units of yarn will sell next month
from our website, yarnit.ai?” Or they could even represent abstract human concepts,
like “Is this picture aesthetically pleasing to users on average?”

One key difference is that the models we typically use for ML are ones that we cannot
write down within a neat little rule like E = mc2, no matter how smart we are. We turn
to ML in settings where many pieces of information—often called features—need to
be taken into account in ways that are hard for humans to specify in advance. Some
examples of data that can be processed as features are atmospheric readings from
thousands of locations, the color values of thousands of pixels in an image, or the
purchase history of all users who have recently visited an online store. When dealing
with information with sources that are this complex—much more than one value
for mass and one scaling constant—it is typically difficult or impossible for human
experts to create and verify reliable models that take advantage of the full range of
available information. In these cases, we turn to using vast amounts of previously
observed data. In using data to train a model, we hope the resulting model will both
fit our past data well and generalize to predict well on new, previously unseen data in
the future.

A Basic Model Creation Workflow
The basic process that is most widely used for creating ML models right now—for‐
mally called supervised machine learning—looks like this.

To start, we gather a whole bunch of historical data about our problem area. This
might be all of the atmospheric sensor readings from the Pacific Northwest for the
last 10 years, or a collection of half a million images, or logs of user browsing history
to the online yarnit.ai site. We extract from that data a set of features, or specific,
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1 The term neural networks is rooted in an analogy between their formulation and the ways that neurons in
a brain work. The term deep learning became popular in part because so many folks pointed out that the
analogy to neurons in the brain is not particularly accurate.

2 Many ML production engineers or SREs do not need to learn the full details of how neural networks, random
forests, or gradient boosted decision trees work (although doing so is not as scary or difficult as it seems at
first). Reliability engineers working with these systems do, however, need to learn the systems requirements
and typical performance of these systems. For this reason, we cover the high-level structure here.

measurable properties of the data. Features represent key qualities of the data in a
way that ML models can easily digest. In the case of numerical data, this might mean
scaling down values to fit nicely within certain ranges. For less structured data, we
might engineer specific quantities to identify and pull out of raw data. Some examples
are input features that might represent things like the atmospheric pressure for each
of 1,000 sensor locations, or the specific color and size values for a given yarn ball, or
a set of features corresponding to each possible product, with a value of 1 if a given
user has viewed that product and 0 if they have not.

For supervised ML, we also require a label of some kind, showing the historical
outcome that we would like our model to predict, if it were to see a similar situation
in the future. This could be the weather result for the given day, like 1 if it rained, and
0 if it did not. Or it could be a score attempting to capture whether a given user found
an image to be aesthetically pleasing, such as 1 if they gave it a “thumbs up,” and 0 if
they did not. Or it could be a value showing the number of units of that given yarn
product that happened to be sold in the given month. Or yarn colors and sizes, and so
on. We’ll record the given label for each entry—and call each one a labeled example.

We’ll then train a model on this historical data, using a chosen model type and a
chosen ML platform or service. Currently, many folks choose to use model types
based on deep learning, also known as neural networks, which are especially effec‐
tive when given very large amounts of data (think millions or billions of labeled
examples).1 Neural networks build connections among layers of nodes based on the
examples that are used in training.

In other settings, methods like random forests or gradient boosted decision trees
work well when presented with fewer examples.2 And more complex, larger models
are not always preferred, either for predictive power or for maintainability and
understandability. Those who are not sure which model type might work best often
use methods like automated machine learning (AutoML), which trains many model
versions, and try to automatically pick the best one. Even without AutoML, all
models have adjustments and settings—called hyperparameters—that must be set
specifically for each task, through a process called tuning, which is really just a fancy
name for trial and error. Regardless, at the end, our training process will produce a
model, which will take the feature inputs for new examples and produce a prediction
as an output. The internals of the model will most likely be treated as opaque and
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3 The evaluation of model quality or performance is a complex topic in its own right that is covered in
Chapter 5.

defying direct inspection, often consisting of thousands, millions, or even billions
of learned parameters that show how to combine the input features (and potentially
recombine them in many further intermediate stages) to create the final output
prediction.

From the perspective of systems engineering, we might notice something disconcert‐
ing. Typically, no human knows what the “right” model is. We can’t look at a model
produced by training and know whether it is good or bad just from our knowledge.
The best we can do is run it through various stress tests and validations and see how
it performs,3 and hope that the stress tests and validations that we come up with are
sufficient to capture the range of situations that the model will be asked to handle.

The most basic form of validation is to take some of the training data that we
prepared and randomly hold some out to the side, calling it a held-out test set. Instead
of using this for training, we wait and use it to stress-test our model, reasoning that
because the model has never seen this held-out data in training, it can serve well as
the kind of previously unseen data for which we hope it will make useful predictions.
So we can feed each example in this test set to the model and compare its prediction
to the true outcome label to see how well it measures up. It is critical that this
validation data is indeed held out from training, because it is all too easy for a model
to experience overfitting, which happens when the model memorizes its training data
perfectly but cannot predict well on new unseen data.

Once we are happy with the validation of our model, it is time to deploy it in the
overall production system. This means finding a way to serve the model predictions
as they are required. One way to do this is by precomputing all possible predictions
for all possible inputs and then writing those to a cache that our system can query.
Another common method is to create a flow of inputs from the production system
and transform them into features so that they can be fed to a copy of our model on
demand, and then feed the resulting predictions from the model back into the larger
system for use. Both of these options can be understood in context in Chapter 8.

If everything works perfectly from here, we are done. However, the world is full of
imperfections, and our models of the world even more so. In the MLOps world, even
the smallest of them can potentially create serious issues, and we therefore need to
be prepared. Let’s take a quick tour of some of these areas that can turn into possible
problems.
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4 Another way to say that is “all the metadata and data required to regenerate the training environment.”

Model Architecture Versus Model Definition Versus
Trained Model
The term model is often used imprecisely to refer to three separate, but related,
concepts:

Model architecture
The general strategy that we are using to learn in this application. This can
include both the choice of model family, such as deep neural network (DNN) or
random forest, and structural choices such as the number of layers in the DNN
or the number of trees in the random forest.

Model definition (or configured model)
The configuration of the model plus the training environment, and the type and
definition of data we will train on. This includes the full set of features that are
used, all hyperparameter settings, random seeds used to initialize a model, and
any other aspect that would be important for defining or reproducing a model. It
is reasonable to think of this as the closure of the entire training environment,4

although many people don’t think through the reliability or systems implications
of this (in particular, that a very large set of software and data must be carefully
and mutually versioned in order to get reasonable amounts of reproducibility).

Trained model
A specific snapshot or instantiated representation of the configured model
trained on specific data at a point in time, containing a specific set of trained
model parameters such as weights and thresholds. Note that some of the software
that we use in ML, especially in distributed deployments, has a fair bit of nonde‐
terminism. As a result, the exact same configured model trained twice on the
exact same data may or may not produce a significantly different trained model.

Although in this book we try to not confuse these concepts, be aware that they
are not carefully differentiated in the industry as a whole and that we also may be
occasionally unclear. Most people call all three of these concepts the model. Even
these terms are ours, as there is no industry-standard terminology to refer to the
different uses of model.

Where Are the Vulnerabilities?
From a systems reliability standpoint, a system that relies on ML has several areas of
vulnerability where things can go wrong. We touch on a range of them briefly in this
section, with a much deeper dive coming in later chapters on many of these topics.
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Note that here we are not referring to security vulnerabilities, but rather to structural
or systemic weaknesses that may be the source of failures or model quality problems.
This section is an attempt to enumerate some of the most common ways that models
fail.

Training Data
Training data is a foundational element that defines much of the behavior of our
systems. The qualities of the training data establish the qualities and behavior of our
models and systems, and imperfections in training data can be amplified in surprising
ways. From this lens, the role of data in ML systems can be seen as analogous to
code in traditional systems. But unlike traditional code, which can be described
with preconditions, post-conditions, and invariants, and may also be systematically
testable, real-world data typically has organic flaws and irregularities. These can lead
to a variety of problem types.

Incomplete coverage
The first problem to consider is that our training data may be incomplete in various
ways. Imagine that we have atmospheric pressure sensors that stop working at tem‐
peratures below freezing, so we have no data on cold days. This creates a blind spot
for the model, especially when it is asked to make predictions in this case. One of
the difficulties here is that these kinds of problems cannot be detected by using a
held-out test set, because by definition the held-out set is a random sample of the
data that we already have access to. Detecting these issues requires a combination of
careful thought and hard work to gather or synthesize additional data that can help
expose these flaws at validation time or correct them at training time.

Spurious correlations
A special form of incomplete coverage happens when correlations in the data do
not always hold in the real world. For example, imagine that all images marked
“aesthetically pleasing” happen to include white gallery walls in the background,
while none of the images marked “not aesthetically pleasing” do. Training on this data
would likely result in a model that shows very high accuracy on held-out test data,
but that is essentially just a white-wall detector. Deploying this model on real data
could have terrible results, even while showing excellent performance on held-out
test data.

Again, uncovering such issues requires careful consideration of the training data, and
targeted probing of the model with well-chosen examples to stress-test its behavior in
a variety of situations. An important class of such problems can occur when societal
factors create a lack of inclusion or representation for certain groups of people; these
issues are discussed in Chapter 6.
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Cold start
Many production modeling systems collect additional data over time in deployment
and are retrained or updated to incorporate that data. Such systems can suffer from
a cold-start problem when there is little initial data. This can happen for systems that
were not set up to collect data initially, like if a weather service wants to use a newly
created network of sensors that has never been previously deployed. It can also arise
in recommender systems, such as those that recommend various yarn products to
users and then observe user interaction data for training. These systems have little or
no training data at the very start of their lifecycle, and can also encounter cold-start
problems for individual items when new products are released over time.

Self-fulfilling prophecies and ML echo chambers
Many models are used within feedback loops, in which they filter data, recommend
items, or select actions that then create or influence the model’s training data in the
future. A model that helps recommend yarn products to users will likely get future
feedback only on the few near-the-top rankings that are actually shown to users.
A conversational agent likely gets feedback only on the sentences that it chooses
to create. This can cause a situation in which data that is not selected never gets
positive feedback, and thus never rises to prominence in the model’s estimation.
Solving this often requires some amount of intentional exploration of lower-ranked
data, occasionally choosing to show or try data or actions that the model currently
thinks are not as good, in order to ensure a reasonable flow of training data across the
full spectrum of possibilities.

Changes in the world
It is tempting to think of data as a reflection of reality, but unfortunately it is really
just a historical snapshot of a part of the world at a particular time. This distinction
can appear a little bit philosophical, but becomes mission critical at times when
real-world events cause changes. Indeed, there may be no better way to convince
the executive leadership in an organization of the importance of MLOps than to ask
the question, “What would happen to our models if tomorrow there was another
COVID-style lockdown?”

For example, imagine that our model helps recommend hotels to users, based on its
learning on feedback from previous user bookings. It is easy to imagine a scenario
in which a COVID-style lockdown creates a sudden sharp drop in hotel bookings,
meaning that a model trained on pre-lockdown data is now extremely overly optimis‐
tic. As it learned on newer data in which many fewer bookings occurred, it is also
easy to imagine that it may do very badly in a world in which lockdowns were then
later eased and users wished to book many more hotel rooms again—only to find that
the system could not recommend any.
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These forms of interactions and feedback loops based on real-world events are not
limited to major world disasters. Here are some others that might occur in various
settings:

• Election night in a given country causes suddenly different view behavior•
on videos.

• The introduction of a new product quickly causes a spike in user interest on•
a certain kind of wool, but our model doesn’t have any previous information
about it.

• A model for predicting stock price makes an error, overpredicting for a certain•
stock. The automated hedge fund using this model then incorrectly buys that
stock—raising the price in the real market and causing other automated hedge
fund models to follow suit.

Labels
In supervised ML, the training labels provide the “correct answer,” showing the model
what it should be trying to predict for a given example. The labels are critical
guidance that show the model its objective, often defined as a numerical score. Here
are some examples:

• A score of 1 for “spam” and 0 for “not spam” for an email spam filter model•
• An amount of daily rainfall, in millimeters, for a given day in Seattle•
• A set of labels for each possible word that might complete a given sentence, with•
1 if it is the actual word that completes the given sentence and 0 if it is any other
word

• A set of labels for each category of object in a given image, with a 1 if that•
category of object appears prominently in the image and 0 if it does not

• A numerical score showing how strongly a given antibody protein binds to a•
given virus in a wet lab experiment

Because labels are so important to model training, it is easy to see that problems with
labels can be the root cause for many downstream model problems. Let’s look at a
few.

Label noise
In statistical language, the term noise is a synonym for errors. If our provided labels
are incorrect for some reason, these errors can propagate into the model behavior.
Random noise can be tolerable in some settings if the errors balance out over time,
although it is still important to measure and assess. More damaging can be errors that
occur in certain parts of the data, such as if a human labeler consistently misidentifies
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frogs as toads for an aquatic image model, or a given set of users is consistently fooled
by a certain kind of email spam message, or contamination occurs in an experiment
that keeps a given set of antibodies from binding to a given class of viruses.

It is therefore critical to regularly inspect and monitor the quality of the labels and
address any issues. In systems in which human experts are used to provide training
labels, this can often mean paying excruciating care to documentation of the task
specifications and providing detailed training for the humans themselves.

Wrong label objective
ML training methods tend to be extremely effective at learning to predict the labels
we provide—sometimes so good that they uncover differences between what we had
hoped the labels mean and what they actually represent. For example, if our goal is
to make customers at the yarnit.ai site happy over time, it can be easy to hope that
a “purchase” label correlates with a satisfied user session. This might lead to a model
that over-fixates on purchases, perhaps learning over time to promote products that
appear to be good deals but in fact are of disappointing quality. As another example,
consider the problem of using user clicks as a signal for user satisfaction with news
articles—this could lead to models that highlight salacious clickbait headlines or even
filter-bubble effects, in which users are not shown news articles that disagree with
their preconceptions.

Fraud or malicious feedback
Many systems rely on signals from users or observations of human behavior to
provide training labels. For example, some email spam systems allow users to label
messages as “spam” or “not spam.” It is easy to imagine that a motivated spammer
may try to fool such a system by sending many spam emails to accounts under their
own control and try to label them as “not spam” in an attempt to poison the overall
model. It is also easy to imagine that a model attempting to predict the number
of stars a certain product will receive in user reviews may be potentially vulnerable
to bad actors who try to overrate their own products—or to underrate those of
their competitors. In such settings, careful security measures and monitoring for
suspicious trends is a critical part of long-term system health.

In addition to problems with developing a complete and representative dataset, or
labeling examples correctly, we can encounter threats to the model during the model-
training process. Labels and labeling systems are discussed in much more detail in
Chapter 4.

Training Methods
Some models are trained once and then rarely or never updated. But most models
will be updated at some point in their lifecycle. This might happen every few months
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as another batch of wet lab data comes in from antibody testing, or it might happen
every week to incorporate a new set of image data and associated object labels, or it
might happen every few minutes in a streaming setting to update with new data based
on users browsing and purchasing various yarn products. On average, each new
update is expected to improve the model overall—but in specific cases, the model
might get worse or even completely break. Here are some possible causes of such
headaches.

Overfitting
As we discussed in the brief overview of a typical model lifecycle, a good model
will generalize well to new, previously unseen data and not just narrowly memorize
its training data. Each time a model is retrained or updated, we need to check for
overfitting by using held-out validation data. But if we consistently reuse the same
validation data, there is a risk that we may end up implicitly overfitting to this reused
validation data.

For this reason, it is important to refresh validation data on a regular basis and ensure
we are not fooling ourselves. For example, if our validation dataset about purchases
on yarnit.ai is never updated, while our customers’ behavior changes over time to
favor brighter wools, our models will fail to track this change in purchase preferences
because we will score models that learn this behavior as being of “lower quality” than
models that do not. It is important that model quality evaluation include real-world
confirmation of a model’s performance.

Lack of stability
Each time a model is retrained, there is no guarantee that its predictions are stable
from one model version to another. One version of a model might perform great
recognizing cats and poorly at dogs, while another version might be quite a bit better
on dogs and less good on cats—even if both models have similar aggregate accuracy
on validation data. In some settings, this can become a significant problem.

For example, imagine a model that is used to detect credit card fraud and to shut
down cards that may have been compromised. A model with 99% precision might be
very good in general, but if the model is retrained each day and makes mistakes on
a different 1% of users each day, then after three months, potentially the entire user
base may have been inconvenienced by faulty model predictions. It is important to
evaluate model quality on relevant subsections of the predictions that we care about.

Peculiarities of deep learning
Deep learning methods have become so important in recent years because of their
ability to achieve extremely strong predictive performance in many areas. However,
deep learning methods also come with a specific set of fragilities and potential
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5 OpenAI offers a straightforward description of this phenomenon, along with helpful references to the source
papers in “Deep Double Descent” by Preetum Nakkiran.

vulnerabilities. Because they are so widely used, and because they have specific
peculiarities and concerns from an MLOps perspective, we go into some detail here
on deep learning models in particular.

When deep learning models are trained from scratch—with no prior information—
they begin from a randomized initial state and are fed a huge stream of training data
in randomized order, most often in small batches. The model makes its best current
prediction (which early on is terrible, since the model has not learned very much
yet) and then is shown the correct label. Once the math is calculated—computing
the loss gradient—the internals of the model should be updated. When using this loss
gradient, a small update is applied to the model internals that tries to make the model
slightly better. This process of small corrections on randomly ordered mini batches is
called stochastic gradient descent (SGD) and is repeated many millions or billions of
times. We stop training after we decide that the model shows good performance on
held-out validation data.

The key insights about this process are as follows:

Deep learning relies on randomization
In the initial random state, data is shown in random order. In large-scale parallel‐
ized settings, randomness is even inherent in the way that updates are processed
because of network and parallel computation effects. Therefore, repeating the
process of training the same model with the same settings on the same data can
lead to substantially different final models.

It can be difficult to know when training is “done”
The model performance on held-out validation data generally improves with
additional training steps, but sometimes bounces around early on, and later can
often get significantly worse if the model starts to overfit the training data by
memorizing it too closely. We stop training and choose the best model that we
can when performance converges to a good level, often choosing a checkpoint
version that shows good behavior at an intermediate point. Unfortunately, there
is no formal way to know whether the performance we see now is the best
we could get if we were to let training continue further. Indeed, a double-dip
phenomenon discovered relatively recently for a wide range of models shows that
our previous conceptions of when to stop may not have been optimal.5

Deep learning models sometimes explode in training
The reason that we take little steps instead of big ones is that it is easy to fall
off a mathematical cliff and put the model internals into a state from which it
is hard to recover. Indeed, exploding gradients is a technical term that connotes
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the appropriate danger. Models that end up in this state often give NaN (not a
number) values in predictions or intermediate computations. This behavior can
also surface as the model’s validation performance suddenly worsening.

Deep learning is highly sensitive to hyperparameters
As has been mentioned, hyperparameters are the various numeric settings that
must be tuned for an ML model to achieve best performance on any given task
or dataset. The most obvious of these is the learning rate, which controls how
small each update step should be. The smaller the steps, the less likely the model
is to explode or result in strange predictions. But the longer training takes, the
more computation is used. Other settings also have significant effects, like how
large or complex the internal state is, how large the little batches are, and how
strongly to apply various methods that try to combat overfitting. Deep learning
models are notoriously sensitive to such settings, which means that significant
experimentation and testing is required.

Deep learning is resource intensive
The training methodology of SGD is effective at producing good models, but
relies on a truly enormous number of tiny updates. Indeed, the amount of
computation used to train some models can look like thousands of CPU cores
running continuously for several weeks.

When deep learning methods are wrong, they might be very wrong
Deep learning methods extrapolate from their training data, which means that
the more unfamiliar a new previously unseen data point is, the more likely we
are to have an extreme prediction that might be completely off base or out of
the range of typical behavior. These sorts of highly confident errors can be a
significant source of system-level misbehavior.

Now that you understand the structure of what can go wrong with model creation, it
might be useful to take a broader perspective on the infrastructure required to train
models in the first place.

Infrastructure and Pipelines
Models are just one component in larger ML systems, which are typically supported
by significant infrastructure to support model training, validation, serving, and mon‐
itoring in one or more pipelines. These systems thus inherit all of the complexities
and vulnerabilities of traditional (non-ML) pipelines and systems in addition to
those of ML models. We will not go into all of those traditional issues here, but will
highlight a few areas in which traditional pipeline issues come to the foreground in
ML-based systems.
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Platforms
Modern ML systems are often built on top of one (or more!) ML frameworks,
such as TensorFlow, PyTorch, or scikit-learn, or even an integrated platform such as
Azure Machine Learning, Amazon SageMaker, or Google Cloud Vertex AI. From a
modeling perspective, these platforms allow developers to create models with a great
degree of speed and flexibility, and in many cases to enable the use of hardware
accelerators such as GPUs and TPUs or cloud-based computation without a lot of
extra work.

From a systems perspective, the use of such platforms introduces a set of dependen‐
cies that is typically outside our control. We may be hit with package upgrades,
fixes that may not be backward-compatible, or components that may not be forward
compatible. Bugs that are found may be difficult to fix, or we may need to wait for the
platform owners to prioritize accepting the fixes we propose. On the whole, the bene‐
fits of using such frameworks or platforms nearly always outweighs these drawbacks,
but costs still must be considered and factored into any long-term maintenance plan
or MLOps strategy.

An additional consideration is that because these platforms are typically created as
general-purpose tools, we usually need to create a significant number of adapter
components, or glue code, that can help us transform our raw data or features into
the correct formats to be used by the platform, and to interface with the models
at serving time. This glue code can quickly become significant in size, scope, and
complexity, and is important to support with testing and monitoring at the same level
of rigor as the other components of the system.

Feature Generation
Extracting informative features from raw input data is a typical part of many ML
systems and may include such tasks as these:

• Tokenizing words in a textual description•
• Extracting price information from a product listing•
• Binning atmospheric pressure readings into one of five coarse buckets (often•

referred to as quantization)
• Looking up time since last login for a user account•
• Converting a system timestamp into a localized time of day•

Most of these tasks are straightforward transformations of one data type to another.
They may be as simple as dividing one number by another or involve complex logic
or requests to other subsystems. In any case, it is important to remember that bugs
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in feature generation are arguably the single most common source of errors in ML
systems.

Feature generation is such a hotspot for vulnerabilities for several reasons. The first is
that errors in feature generation are often not visible by aggregate model performance
metrics, such as accuracy on held-out test data. For example, if we have a bug in
the way that our temperature sensor readings are bucketed, it may reduce accuracy
by a small amount, but our system may also learn to compensate for this bug by
relying more on other features. It can be surprisingly common for bugs to be found in
feature-generation code that has been running in production, undetected, for months
or years.

A second source of feature generation errors occurs when the same logical feature
is computed in different ways at training time and serving time. For example, if
our model relies on a localized time of day for an on-device model, that may be
computed via a global batch-processing job when training data is computed, but it
may be queried directly from the device at serving time. A bug in the serving path
could cause errors in prediction that are difficult to detect because of the lack of
ground-truth validation labels. We cover a set of monitoring best practices for this
important case in Chapter 9.

The third major source of feature-generation errors occurs when our feature genera‐
tors rely on an upstream dependency that becomes buggy or is hit with an outage.
For example, if our model for generating yarn-purchase predictions depends on a
lookup query to another service that reports user reviews and satisfaction ratings, our
model would have serious problems if that service suddenly went offline or stopped
returning sensible responses. In real-world systems, our upstream dependencies often
have upstream dependencies of their own, and we are indeed vulnerable to the full
stack of them all.

Upgrades and Fixes
One particularly subtle area where upstream dependencies can cause issues in our
models arises when the upstream system undergoes an upgrade or bug fix. It may
seem strange to say that fixing bugs can cause problems. The principle to remember
is better is not better, better is different—and different may be bad.

This is because any change to the distribution of feature values that our model
expects to see associated with certain data may cause erroneous behavior. For exam‐
ple, imagine that the temperature sensors we use in a weather prediction model
have a bug in the code that reports degrees in Fahrenheit when it is supposed to be
reporting degrees in Celsius. Our model learns that 32 degrees is freezing, and 90
degrees is a hot summer day near Seattle. If a clever engineer notices this bug and
fixes the temperature sensor code to send Celsius values instead, the model will be

56 | Chapter 3: Basic Introduction to Models



seeing values of 32 degrees and assuming the world is icy cold when it is hot and
sunny.

This form of vulnerability has two key defenses. The first is to arrange for a strong
level of agreement with upstream dependencies about being alerted to such changes
before they happen. The second is to create monitoring of the feature distributions
themselves and alert on change. This is also discussed in more depth in Chapter 9.

A Set of Useful Questions to Ask About Any Model
Researchers and academics tend to focus on the mathematical qualities of an ML
model. In MLOps, we can find value in a different set of questions that will help us
understand where our models and systems can go wrong, how we can fix issues when
they occur, and how we can preventatively engineer for long-term system health:

Where does the training data come from?
This question is meant conceptually—we need to have a full understanding of
the source of the training data and what it is supposed to represent. If we are
looking for email spam, do we get access to the routing information, and can it
be manipulated by bad actors? If we are modeling user interactions with yarn
products, what order are they displayed in, and how does the user move through
the page? What important information do we not have access to, and what are the
reasons? Are there any policy considerations around data access or storage that
we need to take into account, especially around privacy, ethical considerations, or
legal or regulatory constraints?

Where is the data stored and how is it verified?
This is the more literal side of the previous question. Is the data stored in one
large flat file, or shared across a datacenter? What access patterns are most com‐
mon or most efficient? Are there any aggregations or sampling strategies applied
that might reduce cost but lose information? How are privacy considerations
enforced? How long is a given piece of data stored, and what happens if a user
wishes to remove their data from the system? And how do we know that the
stored data has not been corrupted in some way, that the feeds have not been
incomplete, and what sanity checks and verifications we can apply?

What are the features and how are they computed?
Features, the information we extract from raw data to enable easy digestion
for ML models, are often added by model developers with a “more is always
better” approach. From an ops perspective, we need to maintain a complete
understanding of each individual feature, how it is computed, and how the
results are verified. This is important because bugs at the feature-computation
level are arguably the most common source of problems at the system level. At
the same time, these are often the most difficult to detect by traditional ML
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verification strategies—a held-out validation set may be impacted by the same
feature computation bug. As suggested previously, most insidious are issues that
occur when features are computed by one code path at training time—for exam‐
ple, to optimize for memory efficiency—and by another code path at serving
time for real deployment—for example, to optimize for latency. In such cases, the
model’s predictions can go awry, but we may have no ground-truth validation
data to use to detect this.

What kind of examples does the model perform most poorly on?
Nearly all ML models are imperfect and will make mistakes in their predictions
on at least some kinds of examples. It is important to spend time looking at data
that our model makes errors on, understanding any commonalities or trends,
so that we can identify whether these failure modes will impact the downstream
use cases in important ways. This often involves some amount of manual effort,
with actual humans looking at actual data to understand it fully, in addition to
higher-level summaries.

How is the model updated over time?
Some models are rarely updated, such as models for automated translation that
are trained on huge amounts of data in large batches, and pushed to on-device
applications once every few months. Others are updated extremely frequently,
such as an email spam filter model that must be kept constantly up-to-date as
spammers evolve and develop new tricks to try to avoid detection. However, it is
reasonable to assume that all models will eventually need to be updated, and we
will need to have structures in place that ensure a full suite of validation checks
before any new version of a model is allowed to go live. We will also need to
have clear agreements with the model developers in our organization about who
makes judgment calls about sufficient model performance, and how problems in
predictive accuracy are to be handled.

How does our system fit within the larger environment?
Our ML systems are important, but as with many complex data processing
systems, they are typically only one part of a larger overall system, service, or
application. We must have a strong understanding of how our ML system fits
into the larger picture in order to prevent issues and diagnose problems if they
arise. We need to know the full set of upstream dependencies that provide data
to our model, both at training time and serving time, and know how they might
change or fail and how we might be alerted if this happens. Similarly, we need
to know all of the downstream consumers of our model’s predictions, so that we
can appropriately alert them if our model should experience issues. We also need
to know how the model’s predictions impact the end use case, if the model is
part of any feedback loops (either direct or indirect), and if there are any cyclic
dependencies such as time-of-day, day-of-week, or time-of-year effects. Finally,
we need to know how important model qualities like accuracy, freshness, and
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2014) for more information.

prediction latency are within the context of the larger system, so that we can
ensure that these system-level requirements are well established and continue to
be met by our ML system over time.

What is the worst that could happen?
Perhaps most importantly, we need to know what happens to the larger system
if the ML model fails in any way, or if it gives the worst possible prediction
for a given input. This knowledge can help us to define guardrails, fallback strate‐
gies, or other safety mechanisms. For example, a stock-price-prediction model
could conceivably cause a hedge fund to go bankrupt within a few milliseconds6

—unless specific guardrails are put in place that limit certain kinds of buying
actions or amounts.

An Example ML System
To help ground our introduction to basic models, we will walk through some of the
structure of an example production system. We will go through enough detail here so
that you can start to see answers to some of the important questions listed previously,
but we will also dive deeply into specific areas of this example in later chapters.

Yarn Product Click-Prediction Model
In our imaginary yarnit.ai site, ML models are applied to many areas. One of these
is in predicting the likelihood that a user will select a given yarn product listing. In
this setting, well-calibrated probability estimates are useful for ranking and ordering
possible products, including skeins of yarn, various knitting needle types, patterns,
and other yarn and knitting accessories.

Features
The model used in this setting is a deep learning model that takes as input the
following set of features:

Features extracted from the text of the product description
These include tokenized words of text, but also specifically identified character‐
istics such as amount of yarn, size of needles, and product material. Because
these characteristics are expressed in a wide variety of ways in product descrip‐
tions from different manufacturers, each characteristic is predicted by a separate
component model specially trained to identify that characteristic from product
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description text. These models are owned by a separate team, and provided to
our system via a networked service that has occasional outages.

Raw product image data
The raw product image is supplied to the model, after being first normalized to
a 32 × 32–pixel square format by squishing the image to fit a square and then
averaging pixel values to create the low-resolution approximation. As shown in
Figure 3-1, in previous years most manufacturers provided images that were
nearly square, and with the product well centered in the image. More recently,
some manufacturers have started providing images in a much wider landscape
format that must be squished significantly more to become square, and the prod‐
uct itself is often shown in additional settings rather than on a plain, solid-color
background.

Figure 3-1. Raw product images with variable dimensions and formats (images
courtesy of Vecteezy)

Previous user search and click behavior
The logged history of the user, based on user-accepted cookies with appropriate
privacy control, is converted into features that show which previous products the
user has viewed, clicked, or purchased. Because some users do not accept the use
of cookies, not all users have this form of information available at training or
prediction time.
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7 This works because every time a product is shown but not clicked, the model learns that the product was not
a good result for that customer in that context, or at least learns that the product was not the best result. Of
course, this happens frequently for all products, but if a competitor is able to swamp the system with millions
(or more!) of instances of a product being shown but not clicked, the model will learn that customers, in
general, just don’t like that product.

Features related to the user’s search query or navigation
The user may enter search queries such as “thick yellow acrylic yarn” or “wooden
size 8 needles,” or may arrive at a given page by having clicked various topic
headings, navigation bars, or suggestions listed on the previous page.

Features related to the product’s placement on the page
Because products that appear higher in the listed results are more likely to be
viewed and clicked than products listed farther down, it is important at training
time to have features that show where the product was listed at the time the
data was collected. Note, however, that this introduces a tricky dependency—we
cannot know at serving time the value of these features, because the ranking and
ordering of the results on the page depends on our model’s output.

Labels for Features
The training labels for our model are a straightforward mapping of 1 if the user
clicks the product and 0 if the user does not click the product. However, we need
to consider some subtlety in terms of timing—users might click a product several
minutes or even a few hours after a result is first returned to them if they happen to
get distracted in the middle of a task and return to it later. For this system, we allow
for a one-hour window.

Additionally, we have detected that some unscrupulous manufacturers attempt to
boost their product listings by clicking their products repeatedly. Other, more
nuanced but equally ill-intentioned manufacturers attempt to lower their competitors’
listings by issuing many queries that place their competitors listings near the top
without clicking them.7 Both of these are attempts at fraud or spam and need to
be filtered out before the model is trained on this data. This filtering is done by a
large batch-processing job that runs every few hours over recent data to look for
trends or anomalies, and to avoid complications, we simply wait until these jobs have
completed before incorporating any new data into our training pipeline. Sometimes,
however, these filtering jobs fail, and this can introduce significant additional delays
into our system.

Model Updating
Our model is often described to executives as “continually updating,” in order to
adapt to new trends and new products. However, some delays are inherent in the
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system. First, we need to wait an hour to see whether a user has really not clicked
a given result. Then we need to wait while upstream processes filter out as much
spam or fraud as possible. Finally, the feature-extraction jobs that create the training
data require batch-processing resources and introduce several more hours of delay. In
practice, then, our model is updated about 12 hours after a given user has viewed or
clicked a given product. This is done by incorporating batches of data that update the
model from its most recent checkpoint.

Fully retraining the model from scratch requires going back to historical data and
revisiting that data in order, with the goal of mimicking the same sequence of new
data coming in over time. This is done from time to time by model developers when
new model types or additional features are added to the system. For more details, see
Chapter 10.

Model Serving
Fortunately, our online store is quite popular—we get a few hundred queries per
second, which is not shabby for the worldwide knitting products market. For every
query, our system needs to quickly score candidate products so that a set of product
listings can be returned in the two- to three-tenths of a second before a user begins
to perceive waiting time. Our ML system, then, needs to have low serving latency.
To optimize for this, we create a large number of serving replicas in a cloud-based
computation platform, so that requests are not queued up unnecessarily. Each replica
reloads to get the newest version of the model every few hours. (We talk more about
the ins and outs of model serving in Chapter 8.)

Because the model is refreshed on the go and serves live, our system has several areas
that need to be monitored to ensure that performance in real time continues to be
good. These areas include the following:

Model freshness
Is the model actually getting updated on a regular basis? Are the new checkpoints
being successfully picked up by the serving replicas?

Prediction stability
Over time, do the aggregate statistics look roughly in line with recent history? We
can look at basic verifiables, such as the number of predictions made per minute,
and the average prediction values. We can also monitor whether the number of
clicks that we predict over time matches the number of clicks we then later see.

Feature distributions
Our input features are the lifeblood of our system. We monitor basic aggregate
statistics on each input feature to ensure that these remain stable over time.
Sudden changes in the values for a given feature may indicate an upstream
outage or other issue that needs to be managed.
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Of course, this is just a starter set—we go into significantly more details on monitor‐
ing options in Chapter 9.

Common Failures
Thinking through worst-case scenarios helps us be prepared. Each of these tends to
be related to the overall product needs and requirements, because in the end it is
the impact to our overall product ecosystem that really matters. These worst-case
scenarios are as follows:

Infinite latency
One bad thing that could happen is that our model never returns values. Maybe
the serving replicas are overloaded or are all down for some reason. If the
system hangs indefinitely, users will never get any results. A basic time-out and
a reasonable fallback strategy will help a lot here. One fallback strategy can be
to use a much cheaper, simpler model in case of time-outs. Another might be
to precompute some predictions for the most popular items and use these as
fallback predictions.

All predictions are zero
If our model were to score 0 for all products, none would be shown to users.
This would, of course, indicate an issue with the model, but we need to monitor
average predictions and fall back to another system if things go awry.

All predictions are bad
Imagine that our model is corrupted, or an input feature signal becomes unsta‐
ble. In this case, we might get arbitrary or random predictions, which would
confusingly show random products to users, creating a poor user experience. To
counter this, one approach might be to monitor both the aggregate variance of
predictions along with the averages. This can happen for just a subset as well, so
we may need to monitor predictions for relevant subsets of the predictions.

Model favors just a few
Imagine that a few products happen to get very high predictions, and everything
else gets low predictions. Naively, this might create a setting in which those
other products, or new products over time, never get a chance to be shown
to users and thus never get click information that would help them rise in the
rankings. A small amount of randomization can be helpful in these situations to
ensure that the model gets some amount of exploration data, which will allow the
model to learn about products that had not previously been shown. This form
of exploration data is also useful for monitoring, as it allows us to reality-check
the model’s predictions and ensure that when it says a product is unlikely to be
clicked, this holds true in reality as well.
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Clearly, many other things might go wrong—and fortunately, MLOps folks tend to
have strong and active imaginations in this regard. Thinking through scenarios in
this way allows us to robustly prepare our systems and ensure that any failures are not
catastrophic and can be quickly addressed.

Conclusion
In this chapter, we have gone through some of the basics of ML models and how they
fit into overall systems that rely on ML. Of course, we have only begun to scratch the
surface. In later chapters, we dive into more depth on several of the topic areas that
we touched on here.

Here are a few things that we hope you take away:

• Model behavior is determined by data, rather than by a formal (program)•
specification.

• If our data changes, our model behavior will change.•
• Features and training labels are critical inputs to our models. We should take the•

time to understand and verify every input.
• ML models may vary in their degree of understandability, but we can still moni‐•

tor and assess their behavior.
• Disasters do happen, but their impact can be minimized with careful forethought•

and planning.
• MLOps folks need to have strong working relationships and agreements with•

model developers in their organization.
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CHAPTER 4

Feature and Training Data

By Robbie Sedgewick and Todd Underwood

It should be clear by this point that models come from data. This chapter is about
the data: how it is created, processed, annotated, stored, and ultimately used to
create the model. You will see that managing and handling the data creates specific
challenges for repeatability, manageability, and reliability, and we will make some
concrete recommendations about how to approach those challenges. For background,
make sure to see (if you haven’t already) Chapters 2 and 3.

This chapter covers the infrastructure that accepts data from a source and readies
it for use by the training system. We will discuss three fundamental functional
subsystems involved in this task: a feature system, a system for human annotations,
and a metadata system. We discussed features a little in the previous chapter; another
way of thinking about them is that they are characteristics of the input data, especially
characteristics that we have determined are predictive of something we care about.
Labels are specific cases of the output that we want from the model that we ultimately
train. They are used as examples to train that model. Another way to think about
labels is that they are the target or “correct” values for a specific data instance that
the model will learn. Labels can be extracted from logs by correlating the data with
another independent event, or they can be generated by humans. We’ll discuss the
systems needed for generation of human labels at scale, often called annotations. And
finally, we’ll briefly cover metadata systems, which keep track of the details about how
the other systems work and are critical to making them repeatable and reliable.

Several aspects of these systems are usually shared between the feature and data
system—most notably the metadata system. Since metadata (data about the data that
we are collecting and annotating) is best understood after we know what we’re doing
with the data, we will discuss those systems after we have explored the requirements
and characteristics of the feature and labeling systems.
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1 We are aware that one of the promises of deep learning is that it is sometimes possible to use raw data to train
a model without specifically identifying features. This promise is partly true for some use cases but applies
mostly, right now, to perceptual data like images, video, and audio. In those cases, we may not need to extract
specific features from the underlying data, although we may still get good value from metadata features. For
other cases, featurization is still required right now. So even deep learning modelers will benefit from an
understanding of features.

Features
The data is just the data. Features are what make it useful for ML.1 A feature is
any aspect of the data that we determine is useful in accomplishing the goals of the
model. Here, “we” includes the humans building the model or many times can now
include automatic feature-engineering systems. In other words, a feature is a specific,
measurable aspect of the data, or a function of it.

Features are used to build models. They are the structure that connects the model
back to the data used to assemble the model. Previously, we have said that a model
is a set of rules that takes data and uses it to generate predictions about the world.
This is true of a model architecture and a configured model. But a trained model
is very much a formula for combining a collection of features (essentially, feature
definitions used to extract feature values from real data—we cover this definition
more completely later in this chapter). Features frequently are more than just pieces
of the raw data, but rather involve some kind of preprocessing.

These concrete examples of features should provide some intuition about what they
are:

• From a web log, information about the customer (say, browser type).•
• Individual words or combinations of words from text a human enters into an•

application.
• The set of all the pixels in an image, or a structured subset thereof.•
• Current weather at the customer’s location when they loaded the page.•
• Any combination or transformation of features can itself be a feature.•

Typically, features contain smaller portions of structured data extracted from the
underlying training data. As modeling techniques continue to develop, it seems
likely that more features will start to resemble raw data rather than these extracted
elements. For example, a model training on text currently might train on words or
combinations of words, but we expect to see more training on paragraphs or even
whole documents in the future. This has significant implications for modeling, of
course, but people building production ML systems should also be aware of the
impact on systems of having the training data grow larger and less structured.
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At YarnIt we have several models, and one of them is to make recommendations
for different or additional products while a customer is shopping on the site. This
recommendations model is called by the web application during a shopping session
from both the main product page where a customer is viewing an individual product
and from the shopping cart confirmation page, when a customer has just added
a product to their shopping cart. The web server calls the model to ask which addi‐
tional products it should show to this customer under these circumstances, in hopes
of showing the customer something else they might need or want and increasing our
sales to that customer.

In this context, we might consider some of the following useful features that we
would want available to the model as it is queried for additional products:

• Product page or shopping cart confirmation page. Is the user browsing or•
buying?

• The current product the user is looking at, including information from the name•
of the current product, possibly information from the picture of the current
product, the product category, manufacturer, and price.

• Customer average purchase size or total purchases per year, if we know it. This•
might be an indication of just how spendy a customer is.

• Knitter or crocheter? Some customers never crochet, and others only crochet.•
Knowing this might plausibly help us recommend the right yarns, needles, and
patterns. We might have customers self-identify this characteristic or might infer
from previous purchases or browsing behavior.

• Customer country. Some products may be popular in only some places. Also•
some countries are colder than others, and that might be a signal.

These are just a few ideas to give a flavor of what a feature might be. It is important
to note that, absent any actual data, we have no idea whether any of these features is
useful. They certainly seem like they might be helpful, but many features that seem
like they might work simply do not. Most commonly, such features are only slightly
predictive, and the things they predict might be predicted better by another feature
we already have. In those cases, the new feature adds cost and complexity but no
value at all. Remember that features add maintenance costs in many parts of the
system, and those costs exist until the feature is removed. We should be cautious in
adding new features, especially those that depend on new data sources or feeds that,
themselves, will now have to be monitored and maintained.
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Before we go too much further, we need to clarify two completely distinct uses of the
term feature and how we differentiate them:

Feature definition
This is code (or an algorithm or other written description) that describes the
information we are extracting from the underlying data. But it is not any specific
instance of that data being extracted. For example, “Source country of the current
customer obtained by taking the customer’s source IP address and looking it up
in the geolocation data service” is a feature definition. Any particular country—
for example, the “Dominican Republic” or “Russia”—would not be a feature
definition.

Feature value
This is a specific output of a feature definition applied to incoming data. In the
preceding example, the “Dominican Republic” is a feature value that might be
obtained by determining that the current customer’s source IP address is believed
to be most commonly used in that country.

This is not (yet) standard industry terminology, but we adopt it in this section to
distinguish between figuring out how we’re trying to extract information from the
data and figuring out what we have extracted so far.

Feature Selection and Engineering
Feature selection is the process by which we identify the features in the data that
we will use in our model. Feature engineering is the process by which we extract
those features and transform them into a usable state. In other words, through these
activities, we figure out what matters (for the ML task we are trying to accomplish)
and what doesn’t. Building and managing features has changed over the years and
will continue to evolve, as it moves from an entirely manual process to a mostly
automated one, and in some cases a completely automated one. In this chapter,
we refer to the processes of selecting and transforming features jointly as feature
engineering.

In human-driven feature engineering, the process normally starts with human intu‐
ition based on an understanding or the domain of the problem, or at least detailed
consultation with experts. Imagine trying to build a predictive model of what cus‐
tomers would buy from yarnit.ai without knowing what yarn, or needles, or knitting
are, or worse, the very idea of how online retail works at all. Understanding the
underlying problem area is key, and more specificity is better. After that, an ML
engineer spends time with a dataset and a problem and uses a set of statistical tools
to evaluate the likelihood that a particular feature, or several features in combination
with one another, will be useful in the task. Next, ML engineers typically brainstorm
to generate a list of possible features. The range is pretty large. Time of day could be a
feature predicting which yarns customers will buy. Local humidity could be a feature.
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Price could be a feature. Of these three features, one of them is much more likely to
be useful than the others. It is up to humans to generate and evaluate those ideas by
using the ML platform and model metrics.

For algorithmic feature engineering, sometimes included as part of AutoML, the
process is considerably more automatic and data bound. AutoML, outlined in Chap‐
ter 3, is capable of not only selecting from identified features but also being able
to programmatically apply common transforms (like log scaling or thresholding) to
existing features. There are other ways that we can algorithmically learn something
(an embedding) about the data without explicitly specifying it. Still, algorithms are
generally able to identify only features that exist in the data, whereas humans can
imagine new data that could be collected that might be relevant. Subtly, but perhaps
even more importantly, humans understand the process of data collection, including
any likely systemic bias. This might have a material impact on the value of the data.
Nonetheless, especially when constrained to particular types of problems, algorithmic
feature engineering and evaluation can be as effective or more effective than human
feature engineering. This is an evolving set of technologies, and we should expect the
balance between humans and computers here to continue to develop.

Lifecycle of a Feature
The distinction between feature definitions and feature values becomes especially
important when considering the lifecycle of a feature. Feature definitions are created
to fill a need, evaluated against that need, and eventually discarded as either the
model is discarded or better features are found to accomplish the same goal. Here
is a simplified version of the lifecycle of a feature (both the definition and the
representative values):

1. Data collection/creation
Without data, we have no features. We need to collect or create data in order to
create features.

2. Data cleaning/normalization/preprocessing
Although even the process of feature creation could be considered some kind
of data normalization, here we’re referring to coarser preprocessing: eliminating
obviously malformed examples, scaling input samples to a common set of val‐
ues, and possibly even deleting specific data that we should not train on for
policy reasons. This might seem outside the feature engineering process, but no
features can exist until the data exists and is in a usable form. The topic of data
normalization and preprocessing is huge and beyond the scope of this book,
but building the infrastructure to consistently perform that preprocessing and
monitor it is an important area of responsibility.
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3. Candidate feature definition creation
Using either subject-matter expertise plus human imagination, or automated
tools, develop a hypothesis for which elements or combinations of the data are
likely to accomplish our model’s goals.

4. Feature value extraction
We need to write code that reads the input data and extracts the features that we
need from the data. In some simple situations, we might want to do this inline
as part of the training process. But if we expect to train on the same data more
than a few times, it’s probably sensible to extract the feature from the raw data
and store it for later efficient and consistent reading. It is important to remember
that if our application involves online serving, we need a version of this code
to extract the same features from the values that we have available at serving in
order to use them to perform inference in our model. Under ideal circumstances,
the same code can extract features for training and for serving, but we may have
additional constraints in serving that are not present in training.

5. Storage of feature values in a feature store
And this is where we save the features. A feature store is just a place to write
extracted feature values so that they can be quickly and consistently read during
training a model. This is covered in detail in “Feature store” on page 72.

6. Feature definition evaluation
Once we have extracted a few features, we will most likely build a model using
them or add new features to an existing model in order to evaluate how well
they work. In particular, we will be looking for evidence that the features provide
the value that we were hoping they would. Note that this evaluation of feature
definitions comes in two distinct phases that are connected. First, we need to
determine whether the feature is useful at all. This is a coarse-grained evaluation;
we are simply trying to decide whether to continue working on integrating the
feature into our model. The next phase occurs if we decide to keep that feature.
At that point, we need a process to continuously evaluate the quality and value
(compared to cost) of the feature. This will be necessary so that we can determine
that it is still working the way we expect and providing the value we expect even
several years from now.

7. Model training and serving using feature values
Perhaps this is obvious, but the entire point of having features is to use them to
train models, and use the resulting models for a particular purpose.

8. (Usually) Update of feature definitions
We frequently have to update the definition of a feature, either to fix a bug or
simply to improve it in some way. If we add and keep track of versions for
feature definitions, this will be much easier. We can update the version and then,
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optionally, reprocess older data to create a new set of feature values for the new
version.

9. (Sometimes) Deletion of feature values
Sometimes we need to be able to delete feature values from our feature store.
This can be for policy/governance reasons; for example, we may no longer be
allowed to store these feature values because a person or government has revoked
that permission. It can also be for quality/efficiency reasons: we may decide those
values are bad in some way (corrupted, sampled in a biased way, for example) or
just too old to be useful.

10. (Eventually) Discontinuation of a feature definition
Everything comes to an end, including useful features. At some point in the
lifecycle of the model, we will either find a better way to provide the value that
this feature definition provides or find that the world has changed enough that
this feature no longer provides any value. Eventually, we will decide to retire the
feature definition (and values) entirely. We will need to remove any serving code
that refers to the feature, remove the feature values in the feature store, cancel
the code that extracts the feature from the data, and proceed to delete the feature
code.

Feature Systems
To successfully manage the flow of data through our systems, and to turn data into
features that are usable by our training system and manageable by our modelers, we
need to decompose the work into several subsystems.

As was mentioned in the introduction to this chapter, one of these systems will be a
metadata system that tracks information about the data, datasets, feature generation,
and labels. Since in most cases this system will be shared with any labeling systems,
we will discuss it at the end of this chapter. For now, let’s walk through the feature
systems starting with raw data and ending up with features stored in a format ready
to be read by a training system.

Data ingestion system
We will have to write software that reads raw data, applies our feature extraction code
to that data, and stores the resulting feature values in the feature store. In the case
of one-time extraction, even for a very large amount of data, this may be a relatively
ad hoc process with code designed to be run once. But in many cases, the process of
extracting data is a separate production system all its own.

When we have many users or repeated use of the data ingestion system, it should be
structured as an on-demand, repeatable, monitored data processing pipeline. As is
the case for most pipelines, the biggest variable is user code. We will need a system
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2 For example, ML training that occurs on mobile devices will still need to train on some data, but will not have
a structured, managed feature store, since there’s no need to mediate that data for other on-device users.

whereby feature authors write code that identifies features and extracts them to store
in the feature store. We can either let feature authors run their code themselves,
which imposes a substantial operational burden on them, or we can accept the
challenge and provide them a development engineering environment. This helps
them write reliable feature-extraction code so that we can run that code reliably in
our data ingestion system.

We need to build a few systems to facilitate feature authors writing reliable and cor‐
rect features. To begin with, we should note that features should be versioned. We’ll
likely want to substantially change a feature over time, perhaps because of changes
in data that it merges with or other factors related to the data we are collecting. In
these cases, a feature version helps keep the transition clear and avoids unintended
consequences of the change.

Next, we’ll need a test system that checks feature-extraction code for basic correct‐
ness. Then, we’ll need a staging environment for running proposed feature extraction
on a certain number of examples and provide those to the feature authors along
with basic analysis tools to ensure that the feature is extracting what it is expected
to extract. At this point, we may want to allow the feature to be run or may want
additional human review for reliability concerns (dependence on external data, for
example). The more work we do here, the more productive feature authors will be.

Finally, it is important to note that some labels can be effectively calculated or
generated from the very data we have at data ingestion time. A good example of this
at YarnIt is suggested products and sales. We suggest products in order to sell more of
them. The features are the characteristics of the product or characteristics about the
customer, and the label is whether the customer bought it or not. As long as we can
join the suggestion logs against the orders, we will have this label when we construct
the features. In cases like this, the data ingestion system will also generate labels for
those features as well as the features themselves, and both can be stored together in
a common datastore. We will talk much more about labeling systems in “Labels” on
page 50.

Feature store
A feature store is a storage system designed to store extracted feature (and label)
values so that they can be quickly and consistently read during training a model
and even during inference. Most ML training and serving systems have some kind
of a feature store even if it is not called that.2 They are most useful, however, in
larger, centrally managed services, especially when the features (definitions and val‐
ues both) are shared among multiple models. Recognizing the importance of putting
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3 Bucketing is just the process of placing continuous data into discrete categories. Transforming features are
those features that are the result of a computed combination of one or more other features. Simple examples
include ideas like returning the day of the week when provided a date feature, or returning the country name
from a feature that stores a latitude and longitude of a point on Earth. More complex examples might include
fixing the color balance of a picture or choosing a particular projection for 3D data. Perhaps one of the most
common examples is to convert 32-bit numbers (either integers or, worse, floating-point numbers) into 8-bit
numbers in order to significantly reduce the space and computational resources required to process them.

our feature and label data in a single, well-managed place has significantly improved
the production readiness of ML in the industry. But feature stores do not solve every
problem, and many people come to expect more of them than they can deliver. Let’s
review the problems that a feature store solves and the benefits it does provide for
your training system.

The most important characteristic of a feature store is its API. Different commercial
and open source feature stores have different APIs, but all of them should provide a
few basic capabilities:

Store feature definitions
Usually these are stored as code that extracts the feature in a raw data format and
outputs the feature data in the desired format.

Store feature values themselves
Ultimately, we need to write features in a format that is easy to write, easy to
read, and easy to use. This will be largely determined by our proposed use cases
and most commonly is divided into ordered and unordered data, but we cover
nuances in “Lifecycle Access Patterns” on page 75.

Serve feature data
Provide access to feature data quickly and efficiently at a performance level
suitable to the task. We absolutely do not want expensive CPUs or accelerators
stalled, waiting on the I/O of reading from our feature store. This is a pointless
way to waste an expensive resource.

Coordinate metadata writes with the metadata system
To get the most out of our feature store, we should keep information about the
data we store in it in the metadata system. This helps model builders. Note that
metadata about features is somewhat different from metadata about runs of the
pipeline, although both are useful in troubleshooting and reproducing problems.
Feature metadata is most useful for model developers, while pipeline metadata is
most useful for ML reliability or production engineers.

Many feature stores also provide basic normalization of data in ingestion as well as
more sophisticated transformations on data in the store. The most common transfor‐
mations are standardized in-store bucketing and built-in transforming features.3
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4 Some examples will contain features from both buckets. For example, the pictures in an image are blobs that
are best accessed as unstructured data, but the metadata about the image (camera that took it, date, exposure
information, location information) is structured and might even be ordered if it includes fields like date.

The feature store API needs to be carefully calibrated for the use case. We should
consider asking the following questions as we think about what we need in a feature
store:

• Are we reading data in a particular order (log lines that are timestamped) or in•
no order that matters (a large collection of images in a cloud storage system)?

• Will we read the features frequently or only when training a new model? In•
particular, what is the ratio of bytes/records read to bytes/records written?

• Is the feature data ingested once, never appended to, and seldom updated? Or is•
the data frequently appended to while older data is continuously deleted?

• Can feature values be updated, or is the store append-only?•
• Are there special privacy or security requirements for the data we are storing? In•

most cases, the extracted features of a dataset with privacy and use restrictions
will also have privacy and use restrictions.

After thinking about these questions, we should be able to determine our needs for
a feature storage system. If we’re lucky, we will be able to use one of the existing com‐
mercial or open source feature stores on the market. If not, we’ll have to implement
this functionality ourselves, whether we do it in an uncoordinated fashion or as part
of a more coherent system.

Once we are clear on the requirements for an API and have a clearer understanding
of our data access needs, in general we will find that our feature store falls into one of
two buckets:4

Columns
The data is structured and decomposable into columns, not all of which will be
used in all models. Typically, the data is also ordered in some way, often by time.
In this case, column-oriented storage is the most flexible and efficient.

Blobs
This is an acronym for binary large objects, although the common English word
is also descriptive. In this case, the data is fundamentally unordered, mostly
unstructured, and is best stored in a manner that’s more efficient at storing a
bunch of bytes.
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Lifecycle Access Patterns
As we make choices about our feature store, it is critical to keep in mind how, and
how often, we will use the data that we are storing. Consider two cases: a small
amount of data that we retrain on constantly versus a large amount of data that we
use a few times and then delete.

In the former case, we will absolutely want to spend time extracting columnar data,
preprocessing those columns, and making access as efficient as possible, even when
it slows data ingestion. The payoff will be in the faster and cheaper reads that we will
get later. In the latter case, significant preprocessing is a waste of time and processing.
We should ingest the data as cheaply and automatically as possible, and worry about
processing when we read the data.

In all cases, thinking about when we plan to delete the data is important. As covered
in Chapter 2, reliable and effective deletion can be accomplished, but only if we
design for it. For example, we need to determine whether we will delete by time
period (e.g., all of last month’s data) or by end user (e.g., all of the data for customer
number 8723423). Once we know that, we can design the storage layout for effective
deletion. One of the best techniques for this involves encrypting the data based on the
scope we plan to use for deletion (per day, per data source, per customer, or other).
We then store only the keys in a storage system with guaranteed access protection and
the ability to securely delete data (usually with multiple overwrites on all persistent
storage media). When we get a verified request to delete data by scope, we simply
delete the relevant keys. Thus, although the data is still very much available, and may
even be replicated to multiple targets or backed up, it is inaccessible and effectively
deleted with little effort or latency.

Many feature stores will need to be replicated, partially or completely, in order to
store data near the training and serving stacks. Since ML computation requirements
are generally considerable for training, we often prefer to replicate data to the place or
places where we can get the best value for our training dollar. Having the feature store
implemented as a service facilitates the management of this replication.

Transforming Features
Previously, we mentioned transforming features as one desirable piece of function‐
ality in a feature store. For those of us who have worked on relational database
systems, transforming features are the stored procedures of feature stores—they are
fixed transformations of the data, written in code, but stored in the storage system.

Transforming features implement functionality as simple as bucketing a feature that
arrives as a continuous one (e.g., bucketing age into 0–4, 5–17, 18–35, 36–50, 51–65,
66+, or whatever buckets make sense for our use case). But transforming features may
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also combine multiple feature columns and consistently return a different value that
is a function of the multiple columns. They can even be computed across multiple
rows if features are dependent on the distribution of data, although this can be
complicated and expensive. In all cases, the key is to remember that transforming
features offer a consistent and deterministic value that is the programmatic result of
the code we have written being applied to the data in the feature store.

Historically, transforming features were often implemented in other locations in an
ML training pipeline, commonly during the training phase. But then recall that
features also need to be looked up during serving in most ML applications. So
transforming features were implemented in training and in serving. And, as inevita‐
bly happens, code drift occurs. Some transforming features might be implemented
slightly differently in some models compared to others, or in training compared to
serving. Moving the transforming feature into the feature store eliminates this class of
failure.

Putting transforming features into the feature store carries one other potential advan‐
tage: performance. If a transforming feature is computationally intensive and we
intend to read that column frequently, a feature store might choose to materialize
that feature, by processing new data as it arrives and writing out the result of the
transforming feature into a new column. This has two obvious risks. First, we may
change the definition of the feature, which would require recomputing the column
over all of the data. Second, the materialized column could become out of sync with
the data if we have any bugs in the system that processes new data. Nevertheless, if
materializing a feature saves us considerable computation and I/O time, it might be
worth it.

Feature quality evaluation system
As we develop new features, we need to evaluate what, if anything, those features add
to the quality of the overall model, in combination with existing features. This topic
is covered extensively in Chapter 5. The general idea to know at this point is that
we can combine the approaches of using slightly different models, A/B testing, and
a model quality evaluation system in order to effectively evaluate the benefit of each
new feature under development. We can do this quickly and at relatively low cost.

One common approach is to take an existing model and retrain it by using a single
additional feature. In the case of a web application like at YarnIt, we can then direct a
fraction of our user requests to the new model and evaluate its performance on a task.
For example, if we add a feature for Country the User Is In to a model suggesting
new products for a user to try, we can direct 1% of the user requests (either by
request or by user) to the new model. We can evaluate whether the new model has
a higher likelihood of recommending products that users actually buy, and doing so
can inform the choice of whether to keep the new feature or to eliminate it and try
other ideas.
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Keep in mind that even a feature that adds value may not be worth the cost to
collect, process, store, and maintain it. For all but the most trivially obvious features,
it is a good habit to calculate a rough return on investment (ROI) for every new
feature added to the system. This will help us avoid useful features that are still more
expensive than the value that they add.

Labels
Although features seem like the most important aspects of the data, one thing is
more important: labels. By this point, you should have a solid understanding of what
features are for and what systems considerations should be taken into account when
managing large numbers of features. But supervised learning models, in particular,
require labels.

Labels are the other main category of data used in training an ML model. While
features serve as the input to the model, labels are examples of the correct model
output. They are used in the training process to set the (many!) internal parameters
of the model, to tune the model so that it will produce the desired outputs on the
features it gets at inference time. Held-out examples and labels (labels not used in
training) are also used in model evaluation to understand model quality.

As we discussed earlier, for some classes of problems, like our recommendation
system, the labels can be generated algorithmically from the system’s log data. These
features are almost always more consistent and more accurate than human-labeled
features. Since this data is generated from the system’s log data often with the feature
data, these labels are most commonly stored in the feature system for model training
and evaluation. In fact, all labels can be stored in the feature store, although labels
generated by humans need additional systems to generate, validate, and correct
these labels before storing them for model training and evaluation. We discuss these
systems in the next section.

Human-Generated Labels
So let’s turn our attention to the large classes of problems requiring human annota‐
tions to provide the model training data. For example, building a system to analyze
and interpret human voice needs human annotation to ensure that the transcription
is accurate and to understand what the speaker meant. Image analysis and under‐
standing often needs example annotated images for image classification or detection
problems. Getting these human annotations at the scale needed to train an ML
model is challenging from both implementation and cost perspectives. Effort must be
dedicated to designing efficient systems to produce these annotations. We will now
focus on the primary components of these human annotation systems.
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5 This is also a technique used to expand the training dataset algorithmically.
6 Organizations need to ensure that human labelers are treated fairly and paid reasonably for their work.

For a concrete example involving our fictional yarn shop, YarnIt, consider the case
of an advanced new feature that, given an image of crocheted fabric, can predict the
crochet stitch that was used to produce that fabric. Such a model requires someone to
design the set of crochet stitches for the model to predict, providing the set of classes
that model can output. Then large quantities of images of crocheted fabric, covering
all of these stitches, must be labeled by crochet experts as to what stitch produced
this fabric. Using these expert labels, a model can be trained to classify new images of
crocheted fabric and determine the stitch used.

This is not cheap. Humans need to be trained on the task, and each image may need
to be labeled multiple times to ensure that we have trustworthy results. Because of
the large cost associated with acquiring human-generated labels, training systems
should be designed to get as much mileage from them as possible. One technique
commonly used is data augmentation: the feature data is “fuzzed” in a way that
changes the features but doesn’t change the correctness of the label.5 For example,
consider our stitch classification problem. Common image operations like scaling,
cropping, adding image noise, and changing the color balance don’t change the
classification of the stitch in the image but can greatly increase the number of images
available for the model to train on. Similar techniques can be used in other classes of
problems. Care must be taken, however, not to train and test on two images fuzzed
from the same source image, and for this reason any data augmentation of this sort
should be done by the training system and not in the labeling system (or not, and
be careful if you have a good reason to do otherwise, like a very expensive fuzzing
algorithm).

One important note: while some kinds of tremendously complex data can best be
labeled by humans, other types of data definitely cannot be labeled by humans at all.
Typically, this is abstract data with high dimensionality that makes it difficult for a
human to determine the correct answer quickly. Sometimes humans can be provided
with augmentation software to assist in these tasks, but other times they are just the
wrong option for performing the labeling.

Annotation Workforces
The first question that often comes up with human annotation problems is who will
do the labeling. This is a question of scale and equity.6 For simpler models, for which
a small amount of data is sufficient to train the model, typically the engineer building
the model will do their own labeling, often with hacky, homebuilt tools (and a
significant chance of biased labels). For more complex models, dedicated annotation
teams are used to provide human annotations at a scale not otherwise possible.
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These dedicated annotation teams can be colocated with the model builder or
remotely provided by third-party annotation providers. They range in size from a
single person to hundreds of people, all generating annotated data for a single model.
The Amazon Mechanical Turk service was the original platform used for this, but
since then a proliferation of crowdsourcing platforms and services have developed.
Some of these services use paid volunteers, and others use teams of employees to label
the data.

Cost, quality, and consistency trade-offs arise in the choice of labeling. Crowdsourced
labeling often requires additional effort to verify quality and consistency, but paid
labeling staff can be expensive. The costs for these annotation teams can easily exceed
the computational costs of training the models. We discuss some organizational
challenges of managing a large annotation team in Chapter 13.

Measuring Human Annotation Quality
As the quality of any model is only as good as the data used to train the model,
quality must be designed into the system from the start. This becomes increasingly
true as the size of the annotation team grows. Quality can be achieved in multiple
ways depending on the task, but the most frequent techniques used include the
following:

Multiple labeling (also called consensus labeling)
The same data is given to multiple labelers to check for agreement among them.

Golden set test questions
Trusted labelers (or the model builder) produce a set of test questions that are
randomly included in the unlabeled data to evaluate the quality of the produced
labels.

A separate QA step
A fraction of the labeler data is reviewed by a more trusted QA team. (Who QAs
the QA team? Perhaps the model builder, but depending on context, this could be
a separate QA team, policy expert, or someone else with domain expertise.)

Once they’re measured, quality metrics can be improved. Quality issues are best
addressed by managing the annotation team with humility and by understanding that
they will produce higher-quality results when they have the following:

• More training and documentation•
• Recognition for quality and not just throughput•
• A variety of tasks over the workday•
• Easy-to-use tools•
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• Tasks with a balanced set of answers (no needle-in-a-haystack tasks)•
• An opportunity to provide feedback on the tools and instructions•

Annotation teams managed in this way can provide high-quality results. However,
even the best, most conscientious labeler will miss things occasionally, so processes
should be designed to detect or accept these occasional errors.

An Annotation Platform
A labeling platform organizes the flow of data to be annotated and the results
of the annotations while providing quality and throughput metrics of the overall
process. At their heart, these systems are primarily work-queuing systems to divide
the annotation work among the annotators. The actual labeling tool that allows the
labelers to view the data and provide their annotations should be flexible to support
any arbitrary annotation task.

With a team or organization that is working on multiple models simultaneously,
the same annotation team may be shared among multiple annotation projects. Fur‐
thermore, each annotator might have different sets of skills (e.g., language skills or
knowledge of crochet stitches), and the queuing systems can be relatively complex
and require careful design to avoid problems such as scalability issues or queue
starvation. Pipelines enabling the output of one annotation task to serve as the input
to another can be useful for complex workflows. Quality measurement using the
techniques discussed previously should be designed into the system from the start,
so project owners can understand the labeling throughput and quality of all their
annotation tasks.

Although historically many companies have implemented their own labeling plat‐
forms with their own set of these features, many options exist for prebuilt labeling
platforms. The major cloud providers and many smaller startups offer labeling plat‐
form services that can be used with arbitrary annotation workforces, and many
annotation workforce providers have their own platform options that can be used.
This is a rapidly changing area with new features being added to existing platforms
all the time. Publicly available tools are moving beyond simple queuing systems and
are starting to provide dedicated tools for common tasks, including advanced features
like AI-assisted labeling (see the following section). When deciding on any new
technology platform, data security and integration costs must be considered along
with the platform capabilities.

As mentioned in “Feature store” on page 72, in many cases the most sensible place to
store completed labels is in the feature store. By treating human annotations as their
own columns, we can take advantage of all the other functionality provided by the
feature store.
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Active Learning and AI-Assisted Labeling
Active learning techniques can focus the annotation effort on the cases in which
the model and the human annotators disagree or the model is most uncertain, and
thereby improve overall label quality. For example, consider an image detection
problem where the labeler must annotate all the occurrences of a particular object in
an image. An active-learning labeling tool might use an existing model to pre-label
the image with proposed detections of the object in question. The labeler would
then approve correct proposed detections, reject bad ones, and add any missing
ones. While this can greatly increase labeler throughput, it must be done with care
to not introduce bias to the models. Such active learning techniques can actually
increase overall label quality since the model and humans will often have their best
performance on different kinds of input data.

A semi-supervised system allows the modeler to bootstrap the system with weak
heuristic functions that imperfectly predict the labels of some data, and then use
humans to train a model that takes these imperfect heuristics to high-quality training
data. Systems like this can be particularly valuable for problems with complex, fre‐
quently changing category definitions requiring models to be retrained quickly and
frequently.

Efficient annotation techniques for particularly complex labeling tasks is an ongoing
field of research. Particularly if you are doing a common annotation problem, a quick
review of available tools from cloud and annotation providers is well worth your
time, as they are often adding new capabilities for AI-assisted annotation.

Documentation and Training for Labelers
Documentation and labeler training systems are some of the most commonly over‐
looked parts of an annotation platform. While labeling instructions often start simply,
they inevitably get more complex as data is labeled and various corner cases are
discovered. To continue our preceding YarnIt example, perhaps some crochet stitches
are not mentioned in the labeling instructions, or the fabric is made from multiple
different stitches. Even conceptually simple annotation tasks such as “marking all the
people in an image” can end up with copious instructions on proper handling of
various corner cases (reflections, pictures of people, people behind car windows, etc.).

Labeling definitions and directions should be updated as new corner cases are discov‐
ered, and the annotation and modeling teams should be notified about the changes.
If the changes are significant, previously labeled data might have to be re-annotated
to correct data labeled with old instructions. Annotation teams often have significant
turnover, so investing in training for using annotation tools and for understanding
labeling instructions will almost always give big wins in label quality and throughput.
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Metadata
Feature systems and labeling systems both benefit from efficient tracking of metadata.
Now that you have a relatively complete understanding of the kinds of data that
will be provided by a feature or labeling system, you can start to think about what
metadata is produced during those operations.

Metadata Systems Overview
A metadata system is designed to keep track of what we’re doing. In the case of
features and labels, it should minimally keep track of the feature definitions we have
and the versions used in each model’s definitions and trained models. But it is worth
pausing for a minute and trying to see into the future: what are we eventually going to
expect out of a metadata system, and is there any way to anticipate that?

Most organizations start building their data sciences and ML infrastructure without a
solid metadata system, only to regret it later. The next most common approach is to
build several metadata systems, each targeted at solving a particular problem. This is
what we’re about to do here: make one for tracking feature definitions and mappings
to feature stores. Even within this very chapter, you’re about to see that we’re going to
need to store metadata about labels, including their specification and when particular
labels were applied to particular feature values. Later, we’re going to need a system for
mapping model definitions to trained models, along with data about the engineers or
teams responsible for those models. Our model serving system is also going to need
to keep track of trained model versions, when they were put into production. Any
model quality or fairness evaluation systems will need to be read from all of these
systems in order to identify and track the likely contributing causes of changes in
model quality or violations of our proposed fairness metrics.

Our choices for a metadata system are relatively simple:

One system
Build one system to track metadata from all of these sources. This makes it
simple to make correlations across multiple subsystems, simplifying analysis and
reporting. Such a large system is difficult to get right from a data schema per‐
spective. We will be constantly adding columns when we discover data we would
like to keep track of (and backfilling those columns on existing data). It will also
be difficult to stabilize such a system and make it reliable. From a systems design
perspective, we should ensure that our metadata systems are never in the live
path of either model training or model serving. But it’s difficult to imagine how
feature engineering or labeling can take place without the metadata system being
functional, so it can still cause production problems for our humans working on
those tasks.
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7 The industry is littered with organizations that have multiple metadata systems, each of which believes itself
to be the one single system. If the needs are simple and well understood, prefer one system, but take action to
ensure that it’s the only system unless you outgrow the needs of it.

Multiple systems (that work together)
We can build separate metadata systems for each task we identify. Perhaps
we would have one for features and labels, one for training, one for serving,
and one for quality monitoring. Decoupling the systems provides the standard
advantages and costs that decoupling always does. It allows us to develop each
system separately without concern for the others, making them nimbler and
simpler to modify and extend. Additionally, an outage of one metadata system
has limited production impact on others. The cost, though, is the added difficulty
of analysis and reporting across those systems. We will have processes that need
to join data across the features, labeling, training, and serving systems. Multiple
systems should always be designed in a way that allows their data to be joined,
which either means creating and sharing unique identifiers or establishing a
meta-metadata system that tracks the relationships of data fields across the meta‐
data systems.

If the needs are simple and well understood, prefer a single system.7 If the area is
rapidly developing and our teams expect to continue extending what they track and
how they work, multiple systems will simplify the development over time.

Dataset Metadata
For metadata about features and labels, here are a few specific elements that we
should ensure are included:

Dataset provenance
Where did the data come from? Depending on the source of our data, we might
have a lookup table of logs from various systems, a key for an external data
provider with data about when we downloaded the data, or even a reference to
the code that generated the data.

Dataset location
For some datasets, we will store raw, unprocessed data. In this case, we should
store a reference to where we keep that dataset, as well as perhaps information
about where we got it from. Some data we create for ourselves on an ongoing
basis, such as logs from our systems, and so in those cases we should store the
log or datastore reference where that data is stored, or where we are permitted to
read from it.
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Dataset responsible person or team
We should track which person or team is responsible for the dataset. In general,
this is the team that chose to download or create the dataset, or the team that
owns the system that produces the data.

Dataset creation date or version date
It is often useful to know the first date a particular dataset was used.

Dataset use restrictions
Many datasets have restrictions on their use, either because of licensing or gov‐
ernance constraints. We should document that in the metadata system for easy
analysis and compliance later.

Feature Metadata
Keeping track of metadata about our feature definitions is part of what will enable us
to reliably use and maintain those features. This metadata includes the following:

Feature version definition
The feature definition is a reference to code or another durable description
to what data the feature reads and how it processes the data to create the
feature. This should be updated for every updated version of the feature defini‐
tion. As was previously described, versioning these definitions (and restricting
the versions in use) will make the resulting codebase more predictable and
maintainable.

Feature definition responsible person or team
There are two good use cases for storing this information: figuring out what
a feature is for and finding someone who can help resolve an incident when
the feature might be at fault. In both cases, it is useful to store authorship or
maintainer information about that feature.

Feature definition creation date or current version date
This may be fairly obvious, but it’s useful to get a change history of when a
feature was most recently updated and when it was originally created.

Feature use restrictions
This is important but trickier to store. Features may be restricted from use
in some contexts. For example, it may be illegal to use a particular feature in
some jurisdictions. Age and gender may be a reasonable predictor of automobile
insurance risk models, but insurance is highly regulated, and we may not be
permitted to take those fields into account. Banning particular fields only for
specific uses is difficult to track and implement, but the restrictions might be
even more subtle. For example, age may be able to be taken into account, but
only with certain, specific bucketing (like under 25, 25–64, 65–79, and over
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80). In that specific case, it’s easier to just define a transforming feature built
on top of the age column that meets these bucketing requirements and prohibit
the general age feature from being used for insurance purposes while allowing
the insurance_bucketed_age feature to be used. But the general case of storing
and applying feature restrictions based on governance requirements is extremely
difficult, and no great designs or solutions exist at the time of writing.

Label Metadata
We should also track metadata about labels. This is intended to help with the mainte‐
nance and development of the labeling system itself, but might also be used by the
training system as it uses the labels:

Label definition version
Switching to metadata specific to labels and analogously to features, we must
store the version of any label definitions to understand which labeling instruc‐
tions the labels were made with.

Label set version
In addition to label definition changes, changes to the labels may occur because
of incorrect labels getting corrected or new labels being added. If the dataset is
being used for comparison with an older model, using an older version of the
labels may be desirable, to make the comparison more apples-to-apples.

Label source
Although not typically needed for training, it is sometimes necessary to know the
source of each label in a dataset. This may be the source that particular label was
licensed from, the human who produced the label (along with any QA that was
applied to the label), or the algorithm that produced the label if an automated
labeling approach was used.

Label confidence
Depending on how the labels are produced, we might have different estimates
of the confidence of correctness for different labels. For example, we might have
lower confidence in labels that are produced by an automated approach, or
labels produced by a newer labeler. Users of these labels might choose different
thresholds to decide which labels to use in training their models.

Pipeline Metadata
This section covers a final type of metadata that we won’t spend as much time on:
metadata about the pipeline processes themselves. This is data about the intermediate
artifacts we have, which pipeline runs they came from, and which binaries produced
them. This type of metadata is produced automatically by some ML training sys‐
tems; for example, ML Metadata (MLMD) is automatically included in TensorFlow
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Extended (TFX), which uses it to store artifacts about training runs. These systems
are either integrated into those systems or are somewhat difficult to implement later.
As a result, we don’t cover them much here.

More generally, metadata systems are often overlooked or deprioritized. They should
not be. They are one of the most effective and direct contributors to productive use of
the data in an ML system. Metadata unlocks value and should be prioritized.

Data Privacy and Fairness
Feature and labeling systems give rise to profound privacy and ethical considerations.
While many of these topics are covered much more completely in Chapter 6, calling
out a few specific topics here explicitly is worthwhile.

Privacy
Both the data that we receive and human annotation of that data has the significant
possibility of containing PII. While the simplest approach to dealing with private
information is to simply prohibit private or sensitive information from entering into
our feature storage system, this is often not practical.

PII data and features
If we plan to have PII data in features, we will want to plan to do at least three things
in advance:

• Minimize the PII data we process and store•
• Restrict and log access to the feature store containing the private features•
• Plan to delete private features as soon as possible•

It is best to plan for correct handling of PII data in advance. Before even considering
collecting PII data, a clear process should be in place for obtaining consent from
users: they should know what data they are providing and how it will be used. Many
organizations find it valuable to write a plan documenting exactly the data that will
be collected, how it will be processed, where it will be stored, and the circumstances
under which it can be accessed and will be deleted. This allows for an internal
(and possibly, eventually, external) review of the procedures to ensure compliance
with relevant laws and regulations. Most organizations will want to document their
procedures about planning for PII data and train staff on these procedures regularly.

Remember that from an organizational point of view, private data is much more of a
liability than an asset. Therefore, we should be completely convinced that the features
containing private data are required—that they produce sufficient value to outweigh
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the risks of processing and storing private data. As is always the case, different pieces
of nonprivate data may be combined to create a private data element.

Private data and labeling
Human annotation of PII data introduces a host of legal or reputational hazards if not
carefully and properly handled. The details about how to properly manage this kind
of data used in human annotation systems is extremely context specific and is beyond
the scope of this book. Often the best way to handle PII data is to split the data so that
the human doing the annotation has access to only the non-PII parts of the data. This
is specific to the problem at hand. Any labeling of PII data should be done with the
utmost care and awareness from project leadership of the risks involved.

Use of human annotators also introduces an additional risk of the model uninten‐
tionally learning the cultural biases of the annotation instructions or the team itself.
This potential bias is best combated by thoughtful documentation and consideration
of potential areas for confusion, strong lines of communication with the annotation
team, and the hiring of a diverse annotation team. On the positive side, a well-trained
annotation team can be one of the most effective ways to filter sourced data with
potential biases to understand and remove bias.

Fairness
Fairness is a significant topic that is covered much more broadly and thoroughly in
Chapter 6. Suffice it to say here that considering fairness is important while thinking
of features and their labels. It is not easy to select features and sets of features that
ensure that the resulting ML system can be used in only a fair fashion. While it is
true that we need to avoid selecting features and datasets that are unrepresentative
and biased, this alone will not be sufficient to ensure fairness overall. This would be a
good time for those with a particular interest in fairness to read (or reread) Chapter 6.

Conclusion
Production ML systems require mechanisms to efficiently and consistently manage
training data. Training data almost always consists of features, so having a structured
feature store significantly facilitates writing, storing, reading, and ultimately deleting
features. Many ML systems also have a component of human annotation of data.
Humans annotating data require their own systems to facilitate rapid, accurate, and
verified annotations, which ultimately need to be integrated into the feature store.

We hope we have given a clearer understanding of these components and the consid‐
erations that should go into selecting or, in the worst case, building, them.
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CHAPTER 5

Evaluating Model Validity and Quality

OK, so our model developers have created a model that they say is ready to go into
production. Or we have an updated version of a model that needs to be swapped in
to replace a currently running version of that model in production. Before we flip
the switch and start using this new model in a critical setting, we need to answer two
broad questions. The first establishes model validity: will the new model break our
system? The second addresses model quality: is the new model any good?

These are simple questions to ask but may require deep investigation to answer,
often necessitating collaboration among folks with various areas of expertise. From
an organizational perspective, it is important for us to develop and follow robust
processes to ensure that these investigations are carried out carefully and thoroughly.
Channeling our inner Thomas Edison, it is reasonable to say that model development
is 1% inspiration and 99% verification.

This chapter dives into questions of both validity and quality, and provides enough
background to allow MLOps folks to engage with both of these issues. We will also
spend time talking about how to build processes, automation, and a strong culture
around ensuring that these issues are treated with the appropriate attention, care, and
rigor that practical deployment demands.

Figure 5-1 outlines the basic steps of model development and the role that quality
plays in it. While this chapter focuses on evaluation and verification methods, it is
important to note that these processes will likely be repeated over time in an iterative
fashion. See Chapter 10 for more on these topics.
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Figure 5-1. A simplified view of the repeated cycle of model development

Evaluating Model Validity
It has been said that all humans crave validation of one form or another, and we
MLOps folks are no different. Indeed, validity is a core concept for MLOps, and in
this context we cover the concept of whether a model will create system-level failures
or crashes if put into production.

The kinds of things that we consider for validity checks are distinct from model
quality issues. For example, a model could be horribly inaccurate, incorrectly guess‐
ing that every image shown should be given the label chocolate pudding without
causing system-level crashes. Similarly, a model might be shown to have wonderful
predictive performance in offline tests, but rely on a particular feature version that
is not currently available in the production stack, or use an incompatible version of
some ML package, or rarely give values of NaN that cause downstream consumers to
crash. Testing for validity is a first step that allows us to be sure that a model will not
cause catastrophic harm to our system.

Here are some things to test for when verifying that a model will not bring our system
to its knees:

Is it the right model?
Surprisingly easy to overlook, it is important to have a foolproof method for
ensuring that the version of the model we are intending to serve is the version we
are actually using. Including timestamp information and other metadata within
the model file is a useful backstop. This issue highlights the importance of auto‐
mation and shows the difficulties that can arise with ad hoc manual processes.

Will the model load in a production environment?
To verify this, we create a copy of the production environment and simply try to
load the model. This sounds pretty basic, but it is a good place to start because it

90 | Chapter 5: Evaluating Model Validity and Quality



is surprisingly easy for errors to occur at this stage. As you’ll learn in Chapter 7,
we are likely to take a trained version of a model and copy it to another location
where it will be used either for offline scoring by a large batch process, or for
online serving of live traffic on demand. In either case, the model is likely to be
stored as a file or set of files in a particular format that are then moved, copied,
or replicated for serving. This is necessary because models tend to be large, and
we also want to have versioned checkpoints around that can be used as artifacts
both for serving and for future analysis or as recovery options in case of an
unforeseen crisis or error. The problem is that file formats tend to change slightly
over time as new options are added, and there is always at least some chance
that the format a model is saved in is not a format compatible with our current
serving system.

Another issue that can create loading errors is that the model file may be
too large to be loaded into available memory. This is especially possible in
memory-constrained serving environments, such as on-device settings. However,
it can also occur when model developers zealously increase model size to pursue
additional accuracy, which is an increasingly common theme in contemporary
ML. It is important to note that the size of the model file and the size of the
model instantiated in memory are correlated, but often only loosely so, and are
absolutely not identical. We cannot just look at the size of the model file to ensure
that the resulting model is sufficiently small to be successfully loaded in our
environment.

Can the model serve a result without crashing the infrastructure?
Again, this seems like a straightforward requirement: if we feed the model one
minimal request, does it give us a result back of any kind, or does the system
fail? Note that we say “one minimal request” as opposed to many requests inten‐
tionally, because these sorts of tests are often best done with single examples and
single requests to start. This both minimizes risk and makes debugging easier if
failures do arise.

Serving the result for one request might cause a failure, for several reasons:

Platform version incompatibility
Especially when using third-party or open source platforms, the serving
stack could easily be using a different version of the platform than the
training stack used.

Feature version incompatibility
The code for generating features is often different in the training stack
from the serving stack, especially when each stack has different memory,
compute cost, or latency requirements. In such cases, it is easy for the code
that generates a given feature to get out of sync in these different systems,
causing failures—one form of a general class of problems often referred to
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as training-serving skew. For example, if a dictionary is used to map word
tokens to integers, the serving stack might be using a stale version of that
dictionary even after a newer one was created for the training stack.

Corrupted model
Errors happen, jobs crash, and in the end our machines are physical devices.
It is possible for model files to become corrupted in one way or another,
either through error at write time or by having NaN values written to disk if
there were not sufficient sanity checks in training.

Missing plumbing
Imagine that a model developer creates a new version of a feature in training,
but neglects to implement or hook up a pipeline that allows that feature to
be used in the serving stack. In these cases, loading in a version of the model
that relies on that feature will result in crashes or undesirable behavior.

Results out of range
Our downstream infrastructure might require the model predictions to be
within a given range. For example, consider what might happen if a model
is supposed to return a probability value between 0 and 1, not inclusive, but
instead returns a score of exactly 0.0, or even –0.2. Or consider a model that
is supposed to return 1 of 100 classes to signify the most appropriate image
label, but instead returns 101.

Is the computational performance of the model within allowable bounds?
In systems that use online serving, models must return results on the fly, which
typically means tight latency constraints must be met. For example, a model
intended to do real-time language translation might have a budget of only a
few hundred milliseconds to respond. A model used within the context of high-
frequency stock trading might have significantly less.

Because such constraints are often in tension with each other, for changes made
by model developers in the search for increased accuracy, it is critical to measure
latency before deployment. In doing so, we need to keep in mind that the pro‐
duction settings are likely to have peculiarities around hardware or networking
that create bottlenecks that might differ from a development environment, so
latency testing must be done as close to the production setting as possible. Simi‐
larly, even in offline serving situations, overall compute cost can be a significant
limiting factor, and it is important to assess any cost changes before kicking off
huge batch-processing jobs. Finally, as discussed previously, storage costs, such as
size of the model in RAM, are another critical limitation and must be assessed
prior to deployment. Checks like this can be automated, but it may also be useful
to verify manually to consider trade-offs.
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For online serving, does the model pass through a series of gradual canary levels in
production?

Even after we have some confidence in a new model version based on the
validation checks, we will not want to just flip a switch and have the new model
suddenly take on the full production load. Instead, our collective stress level
will be reduced if we first ask the model to serve just a tiny trickle of data, and
then gradually increase the amount after we have assurance that the model is
performing as expected in serving. This form of canary ramp-up is a place where
model validation and model monitoring, as discussed in Chapter 9, overlap to
a degree: our final validation step is a controlled ramp-up in production with
careful monitoring.

Evaluating Model Quality
Ensuring that a model passes validation tests is important, but by itself does not
answer whether the model is good enough to do its job well. Answering these kinds
of questions takes us into the realm of evaluating model quality. Understanding
these issues is important for model developers, of course, but is also critical for both
organizational decision makers and for MLOps folks in charge of keeping systems
running smoothly.

Offline Evaluations
As discussed in the whirlwind tour of the model development lifecycle in Chapter 2,
model developers typically rely on offline evaluations, such as looking at accuracy
on a held-out test set as a way to judge how good a model is. Clearly, this kind
of evaluation has limitations, as we will talk about later in this chapter—after all,
accuracy on held-out data is not the same thing as happiness or profit. Despite their
limitations, these offline evaluations are the bread and butter of the development
lifecycle because they offer a reasonable proxy while existing in a sweet spot of
low cost and high efficiency that allows developers to test many changes in rapid
succession.

Now, what is an evaluation? An evaluation consists of two key components: a perfor‐
mance metric and a data distribution. Performance metrics are things like accuracy,
precision, recall, area under the ROC curve, and so on—we will talk about a few
of these later on if they are not already familiar. Data distributions are things like
“a held-out test set that was randomly sampled from the same source of data as the
training data” that we have talked about before, but held-out test data is not the
only distribution that might be important to look at. Others might include “images
specifically from roads in snowy conditions” or “yarn store queries from users in
Norway” or “protein sequences that have not previously been identified by biologists.”
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An evaluation is always composed of both a metric and a distribution together—
the evaluation shows the model’s performance on the data in that distribution, as
computed by the chosen metric. This is important to know because folks in the ML
world sometimes use shorthand and say things like “this model has better accuracy”
without clarifying what the distribution is. This sort of shorthand can be dangerous
for our systems because it neglects to mention which distribution is used in the
evaluation, and can lead to a culture in which important cases are not fully assessed.
Indeed, many of the issues around fairness and bias that emerged in the late 2010s
can likely be tracked down to not giving sufficient consideration to the specifics of
the data distribution used at test time during model evaluations. Thus, when we hear
a statement like “accuracy is better,” we can always add value by asking on what
distribution?

Evaluation Distributions
Perhaps no question is more important in the understanding of an ML system
than deciding how to create the evaluation data. Here are some of the most com‐
mon distributions used, along with some factors to consider as their strengths and
weaknesses.

Held-out test data
The most common evaluation distribution used is held-out test data, which we cov‐
ered in Chapter 3 when reviewing the typical model lifecycle. On the surface, this
seems like an easy thing to think about—we randomly select some of our training
data to be set aside and used only for evaluation. When each example in the training
data has an equal and independent chance of being put into the held-out test data, we
call this an IID test set. The IID term is statistics-speak that means independently and
identically distributed. We can think of the IID test set process as basically flipping
a (maybe biased) coin or rolling a die for each example in the training data, and
holding each one out for the IID test set based on the result.

The use of IID test data is widely established, not because it is necessarily the
most informative way to create test data, but because it is the way that respects the
assumptions that underpin some of the theoretical guarantees for supervised ML. In
practice, a purely IID test set might be inappropriate, though, because it might give an
unrealistically rosy view of our model’s expected performance in deployment.

As an example, imagine we have a large set of stock-price data, and we want to train a
model to predict these prices. If we create a purely IID test set, we might have training
data from 12:01 and 12:03 from a given day in the training data, while data from
12:02 ends up in the test data. This would create a situation in which the model can
make a better guess about 12:02 because it has seen the “future” of what 12:03 looks
like. In reality, a model that is guessing about 12:02 would be unable to have access to
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this kind of information, so we would need to be careful to create our evaluations in
a way that does not allow the model to train on “future” data. Similar examples might
exist in weather prediction, or yarn product purchase prediction.

The point here is not that IID test distributions are always bad, but rather that the
details here really do matter. We need to apply careful reasoning and common sense
to the creation of our evaluation data, rather than relying on fixed recipes.

Progressive validation
In systems with a time-based ordering to data—like our preceding stock-price pre‐
diction example—it can be quite helpful to use a progressive validation strategy,
sometimes also called backtesting. The basic idea is to simulate how training and
prediction would work in the real world, but playing the data through to the model in
the same order that it originally appeared.

For each simulated time step, the model is shown the next example and asked to
make its best prediction. That prediction is then recorded and incorporated to the
aggregate evaluation metric, and only then is the example shown to the model for
training. In this way, each example is first used for evaluation and then used for
training. This helps us see the effects of temporal ordering, and ask questions like,
“What would this model have done last year on election day?”

The drawback is that this setup is somewhat awkward to adapt if our models require
many passes over the data to train well. A second drawback is that we must be careful
to make comparisons between models based on evaluation data from exactly the
same time range. Finally, not all systems will operate in a setting in which the data
can meaningfully be ordered in a canonical way, like time.

Golden sets
In models that continually retrain and evaluate using some form of progressive
validation, it can be difficult to know whether the model performance is changing or
whether the data is getting easier or harder to predict on. One way to control this is
to create a golden set of data that models are not ever allowed to train on, but that
is from a specific point in time. For example, we might decide that the data from
October 1 of last year might be set aside as golden set data, never to be used for
training under any circumstance, but held aside.

When we set aside the golden set of data, we also keep with it either the results of
running that set of data through our model or, in some cases, the result of having
humans evaluate the golden set. We might sometimes treat these results as “correct”
even if they are really just the predictions for those examples from a specific process
and at a particular point in time.
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lamwini and Timnit Gebru.

Performance on golden set data like this can reveal any sudden changes in model
quality, which can aid debugging greatly. Note that golden set evaluations are not
particularly useful for judging absolute model quality, because their relevance to
current performance diminishes as their time period recedes into the past. Another
problem can arise if we are not able to keep golden set data around for very long (for
example, to respect certain data privacy laws or to respond to requests for deletion
or expiration of access). The primary benefit of golden sets is to identify changes
or bugs, because, typically, model performance on golden set data changes only
gradually as new training data is incorporated into the model.

Stress-test distributions
When deploying models in the real world, one worry is that the data they may
encounter in reality may differ substantially from the data they were shown in
training. (These issues are sometimes described by different names in the literature,
including covariate shift, nonstationarity, or training-serving skew). For example, we
might have a model trained largely on image data from North America and Western
Europe, but that is then later applied in countries across the globe. This creates two
possible problems. First, the model may not perform well on the new kinds of data.
Second, and even more important, we may not know that the model would not
perform well because the data was not represented in the source that supplied the
(supposedly) IID test data.

Such issues are especially critical from a fairness and inclusion standpoint. Imagine
we are building a model to predict the yarn color preferred by a user, given a
provided portrait image. If our training data does not include portrait images with a
wide range of skin tones, an IID test set might not have sufficient representation to
uncover problems if the model does not do well for images of people with especially
dark skin tones. (This example harkens back to seminal work by Buolamwini and
Gebru.)1 In cases like this, it’s important to create specific stress-test distributions in
which carefully constructed test sets each probe for model performance on different
skin tones. Similar logic applies to testing any other area of model performance that
might be critical in practice, from snowy streets for navigation systems developed in
temperate climates, to a broad range of accents and languages for speech-recognition
systems developed in a majority English-speaking workplace.
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2 See, for example, “Noise or Signal: The Role of Image Backgrounds in Object Recognition” by Kai Xiao. The
What-If Tool is also an excellent example of tooling that allows for counterfactual probing.

Sliced analysis
One useful trick to consider is that any test set—even an IID test set—can be sliced
to effectively create a variety of more targeted stress-test distributions. By slicing, we
mean filtering the data based on the value of a certain feature. For example, we could
slice images to look at performance on images with only snowy backgrounds, or
stocks from companies that were only in their first week of trading on the market,
or yarns that were only a shade of red. So long as we have at least some data that
conforms to these conditions, we can evaluate performance on each of these cases
through slicing. Of course, we need to take care not to slice too finely, in which
case the amount of data we would be looking at would be too small to say anything
meaningful in a statistical sense.

Counterfactual testing
One way to understand a model’s performance at a deeper level involves learning
what the model would have predicted if the data had been different. This is some‐
times called counterfactual testing because the data that we end up feeding to the
model runs counter to the actual data in some way. For example, we might ask what
the model would predict if the dog in a given image were not on a grassy background,
but instead shown against a background of snow or of clouds.2 We might ask if the
model would have recommended a higher credit score if the applicant had lived in
a different city, or if the model would have predicted a different review score if the
pronoun for the lead actor in a movie had been switched from he to she.

The trick here is that we might not have any examples that match any of these
scenarios, in which case we would take the step of creating synthetic counterfactual
examples by manipulating or altering examples that we do have access to. This tends
to be most effective when we want to test that a given alteration does not substantially
change model prediction. Each of these tests might reveal something interesting
about the model and the kinds of information sources it relies on, allowing us to use
judgment about whether it is appropriate model behavior and whether we need to
address any issues prior to launch.

A Few Useful Metrics
In some corners of the ML world, there is a tendency to look at a single metric as the
standard way to view a model’s performance on a given task. For example, accuracy
was, for years, the one way that models were evaluated on ImageNet held-out test
data. And indeed, this mindset is most often seen in benchmarking or competition
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settings, in which the use of a single metric simplifies comparisons between different
approaches. However, in real-world ML, it is often ill-advised to myopically consider
only a single metric. It is better to think of each metric as a particular perspective
or vantage point. Just as there is no one best place to watch the sun rise, there is no
one best metric to evaluate a given model, and the most effective approach is often
to consider a diverse range of metrics and evaluations, each of which has its own
strengths, weaknesses, blind spots, and peculiarities.

Here, we will try to build up our intuition around some of the more common
metrics. We divide them into three broad categories:

Canary metrics
Are great at indicating that something is wrong with a model, but are not so
effective at distinguishing a good model from a better one.

Classification metrics
Help us understand the impact of a given model on downstream tasks and
decisions, but require fiddly tuning that can make comparisons between models
more difficult.

Regression and ranking metrics
Avoid this tuning and make comparisons easier to reason about, but may miss
specific trade-offs that might be available when some errors are less costly than
others.

Canary metrics
As we’ve noted, this set of metrics offers a useful way to tell when something is
horribly wrong with our model. Like the fabled canary in the coal mine, if any of
these metrics is not singing as expected, then we definitely have a problem to deal
with. On the flip side, if these metrics look good, that does not necessarily mean that
all is well or that our model is perfect. These metrics are just a first line of detection
for potential issues.

Bias.    Here we use bias in the statistical sense rather than the ethical sense. Statistical
bias is an easy concept—if we add up all the things we expect to see based on the
model’s predictions, and then add up all the things we actually see in the data, do we
get the same amount? In an ideal world, we would, and typically a well-functioning
model will show very low bias, meaning a very low difference between the total
expected and observed values for a given class of predictions.

One of the nice qualities of bias as a metric is that unlike most other metrics, there is
a “correct” value of 0.00 that we do expect most models to achieve. Differences here
of even a few percent in one direction or another are often a sign that something
is wrong. Bias often couples well with sliced analysis as an evaluation strategy to
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uncover problems. We can use sliced analysis to identify particular parts of the data
that the model is performing badly on as a way to begin debugging and improving
the overall model performance.

The drawback of bias as a metric is that it is trivial to create a model with perfectly
zero bias, but that is a terrible model. As a thought experiment, this could be done by
having a model that just returns the average observed value for every example—zero
bias in aggregate, but totally uninformative. A pathologically bad model like this
can be detected by looking at bias on more fine-grained slices, but the larger point
remains. Bias as a metric is a great canary, but just having zero bias is not by itself
indicative of a high-quality model.

Calibration.    When we have a model that predicts a probability value or a regression
estimate, like a probability that a user will click a given product or a numerical pre‐
diction of tomorrow’s temperature, creating a calibration plot can provide significant
insight into the overall quality of the model. This is done essentially in two steps,
which can be thought of roughly as first bucketing our evaluation data in a set of
buckets and then computing the model’s bias in each of these buckets. Often, the
bucketing is done by model score—for example, the examples that are in the lowest
tenth of the model’s predictions go in one bucket, the next lowest tenth in the next
bucket, and so on—in a way that brings to mind the idea of sliced analysis discussed
previously. In this way, calibration can be seen as an extension of the approach of
combining bias and sliced analysis, in a systematic way.

Calibration plots can show systemic effects such as overprediction or underpre‐
diction in different areas, and can be an especially useful visualization to help
understand how a model performs near the limits of its output range. In general,
calibration plots can help show areas where a model may systematically overpredict
or underpredict, by plotting the observed rates of occurrence versus their predicted
probabilities. This can be useful to help detect situations where the model’s scores are
either more or less reliable. For example, the plot in Figure 5-2 shows a model that
gives good calibration in the middle ranges, but does not do as well at the extremes,
overpredicting on actual low probability examples and underpredicting on actual
high-probability examples.
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Figure 5-2. An example calibration plot

Classification metrics
When we think of model evaluation metrics, classification metrics like accuracy are
often the first ones that come to mind. Broadly speaking, a classification metric helps
measure whether we’ve correctly identified that a given example belongs to a specific
category (or class). Class labels are typically discrete—things like click or no_click,
or lambs_wool, cashmere, acrylic, merino_wool—and we tend to judge a prediction
as a binary correct or incorrect on getting a given class label right.

Because models typically report a score for a given label, such as lambs_wool: 0.6,
cashmere: 0.2, acrylic: 0.1, merino_wool: 0.1, we need to invoke a decision
rule of some kind to decide when we are going to predict a given label. This might
involve a threshold, like “predict acrylic whenever the score for acrylic is above 0.41
for a given image,” or it might ask which class label gets the highest score out of
all available options. Decision rules like these are a choice on the part of the model
developer, and are often set by taking into account the potential costs of different
kinds of mistakes. For example, it may be significantly more costly to miss identifying
stop signs than to miss identifying merino wool products.

With that background, let’s look at a couple of classic metrics.

Accuracy.    In conversation, many folks use the term accuracy to mean a general sense
of goodness, but accuracy also has a formal definition that shows the fraction of
predictions for which the model was correct. This satisfies an intuitive desire—we
want to know how often our model was right. However, this intuition can sometimes
be misleading without appropriate context.
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To place an accuracy metric into context, we need to have some understanding of
how good a naive model that always predicts the most prevalent class would be,
and also to understand relative costs of different types of errors. For example, 99%
accuracy sounds pretty good, but may be completely terrible if the goal is figuring out
when it is safe to cross a busy street—we would be almost sure to be in an accident
quite soon. Similarly, 0.1% accuracy sounds horrible but would be an amazingly good
performance if the goal was to predict winning lottery number combinations. So,
when we hear an accuracy value quoted, the first question should always be, “What
is the base rate of each class?” It is also worth noting that seeing 100% accuracy—or
perfect performance on any metric—is most often cause for concern rather than
celebration, as this may indicate overfitting, label leakage, or other problems.

Precision and recall.    These two metrics are often paired together, and are related in an
important way. Both metrics have a notion of a positive, which we can think of as
“the thing we are trying hard to find.” This can be finding spam for a spam classifier,
or yarn products that match the user’s interest for a yarn store model. These metrics
answer the following related questions:

Precision
When we said an example was a positive, how often was that indeed the case?

Recall
Out of all of the positive examples in our dataset, how many of them were
identified by our model?

These questions are especially useful to ask and answer when positives and negatives
are not evenly split in the data. Unlike accuracy, the intuitions of what a precision of
90% or a recall of 95% might mean scale reasonably well even if positives are just a
small fraction of the overall data.

That said, it is important to notice that the metrics are in tension with each other
in an interesting way. If our model does not have sufficient precision, we may be
able to increase its precision by increasing the threshold it uses to make a decision.
This would cause the model to say “positive” only when it is even more sure, and for
reasonable models would result in higher precision. However, this would also mean
that the model refrains from saying “positive” more often, meaning that it identifies
fewer of the total possible number of positives and results in lower recall because
of the increased precision. We could also trade off in the other direction, lowering
thresholds to increase recall at the cost of less precision. This means that it is critical
to consider these metrics together, rather than in isolation.

Evaluating Model Quality | 101



AUC ROC.    This is sometimes just referred to as area under the curve (AUC). ROC is an
abbreviation for receiver operating characteristics, a metric that was first developed to
help measure and assess radar technology in the Second World War, but the acronym
has become universally used.

Despite the confusing name, it has the lovely property of being a threshold-
independent measure of model quality. Remember that accuracy, precision, and recall
all rely on classification thresholds, which must be tuned. The choice of threshold
can impact the value of the metric substantially, making comparisons between models
tricky. AUC ROC takes this threshold tuning step out of the metric computation.

Conceptually, AUC ROC is computed by creating a plot showing the true-positive
rate and the false-positive rate for a given model at every possible classification
threshold, and then finding the area under that plotted curved line; see Figure 5-3
for an example. (This sounds expensive, but efficient algorithms can be used for this
computation that don’t involve actually running a lot of evaluations with different
thresholds.) When the area under this curve is scaled to a range from 0 to 1, this
value also ends up giving the answer to the following question: “If we randomly
choose one positive example and one negative from our data, what is the probability
that our model gives a higher prediction score to the positive example rather than the
negative?”

No metric is perfect, though, and AUC ROC does have a weakness. It is vulnerable
to being fooled by model improvements that change the relative ordering of exam‐
ples far away from any reasonable decision threshold, such as pushing an already
low-ranked negative example even lower.
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Figure 5-3. An ROC curve demonstrating performance of a model on a set of
classifications

Precision/recall curves.    Just as an ROC curve maps out the space of trade-offs between
true-positive rate and false-positive rate at different decision thresholds, many folks
plot precision/recall curves that map out the space of trade-offs between precision
and recall at different decision thresholds. This can be useful to get an overall sense of
comparison between two models across a range of possible trade-offs.

Unlike the AUC ROC, the computed area under the precision/recall curve does not
have a theoretically grounded statistical meaning, but is often used in practice as a
quick way to summarize the information nonetheless. In cases of strong levels of class
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imbalance, there is a case to be made that the area under the precision/recall curve is
a more informative metric.3

Regression metrics
Unlike classification metrics, regression metrics do not rely on the idea of a decision
threshold. Instead, they look at the raw numerical output that represents a model’s
prediction, like predicted price for a given skein of yarn, number of seconds a user
might spend reading a description, or the probability that a given picture contains a
puppy. They are most often used when the target value itself is continuously valued,
but have utility in discrete valued label settings like click-through prediction as well.

Mean squared error and mean absolute error.    When comparing predictions from a
model to a ground-truth value, the first metric we might look at is the difference
between our prediction and reality. For example, in one case, our model might
predict 4.3 stars for an example that had 4 stars in reality, and in another case it might
predict 4.7 stars for an example that had 5 stars in reality. If we were to aggregate
those values without thinking about it, so we could look at averages over many values,
we would run into the mild annoyance that in the first example the difference was 0.3
and in the second it was –0.3, so our average error would appear to be 0, which feels
misleading for a model that is clearly imperfect.

One fix for this is to take the absolute value of each difference—creating a metric
called mean absolute error (MAE) to average these values across examples. Another
fix is to square the errors—raising them to the power of two—to create a metric
called mean squared error (MSE). Both metrics have the useful quality that a value
of 0.0 shows a perfect model. MSE penalizes larger errors much more than smaller
errors, which can be useful in domains where you do not want to make big mistakes.
MSE can be less useful if the data contains noise or outlier examples that are better
ignored, in which case MAE is likely a better metric. It can be especially useful
to compute both metrics and see if they yield qualitatively different results for a
comparison between two models, which can provide clues into a deeper level of
understanding their differences.

Log loss.    Some people think of log loss as an abbreviation for logistic loss, because it
is derived from the logit function, which is equivalent to the log of the odds ratio
between two possible outcomes. A more convenient way to think of it might be as
the loss we want to use when we think about our model outputs as actual probabilities.
Probabilities are not just numbers restricted to the range from 0.0 to 1.0, although
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this is an important detail. Probabilities also meaningfully describe the chance that a
given thing will happen to be true.

Log loss is great for probabilities because it will highlight the difference between a
prediction of 0.99, 0.999, and 0.9999, and will penalize each more confident predic‐
tion significantly more if it turns out to be incorrect—and the same thing happens
at the other end of the range for predictions like 0.01, 0.001, and 0.0001. If we do
indeed care about using the model outputs as probabilities, this is quite helpful.
For example, if we are creating a risk-prediction model predicting the chance of an
accident, there is an enormous difference between an operation being 99% reliable
and 99.99% reliable—and we could end up making very bad pricing decisions if our
metrics did not highlight these differences. In other settings, we might just loosely
care how likely a picture is to contain a kitten, and 0.01 and 0.001 probabilities might
both be best interpreted as “basically unlikely,” in which case log loss would be a poor
choice of final metric. Lastly, it is important to note that log loss can give infinite
values (which show up as NaN values and destroy averages) if our models were to
predict values of exactly 1.0 or 0.0 and be in error.

Operationalizing Verification and Evaluation
We have just taken a whirlwind tour through the world of evaluating model validity
and model quality. How do we turn this knowledge into something actionable?

Assessing model validity is something that anyone who cares about production
should know how to do. This is possible, even if you don’t do model evaluation daily,
with a combination of training, checklists/processes, and automated support code
for the simpler cases (which itself saves human expertise and judgment for more
demanding cases).

For questions of model quality evaluations, things are perhaps a little more ambigu‐
ous. Obviously, it is highly useful for MLOps folks to have a working knowledge of
the various distributions and metrics that are most critical for assessing model quality
for our system. An organization may go through a few phases.

In the earliest days of model development for an organization, the biggest questions
are often much more around getting something working rather than about how to
evaluate it. This can lead to relatively coarse strategies for evaluation. For example,
the main problems in developing the first version of a yarn store product recommen‐
dation model are much more likely to be around creating a data pipeline and a
serving stack, and model developers might not have bandwidth to choose carefully
between varying classification or ranking metrics. So our first standard evaluation
might just be AUC ROC for predicting user clicks within a held-out test set.

As the organization develops, a greater understanding develops of the drawbacks or
blind spots that a given evaluation might have. Typically, this results in additional
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metrics or distributions being developed that help shed light on important areas of
model performance. For example, we might notice a cold-start problem in which
new products are not represented in the held-out set, or we might decide to look at
calibration and bias metrics across a range of slices by country or product listing type
to understand more about our model’s performance.

At a later stage, the organization may start to go back and question basic assump‐
tions, such as whether the chosen metrics reflect the business goals with sufficient
veracity. For example, in our imaginary yarn store, we may come to realize that
optimizing for clicks is not actually equivalent to optimizing for long-term user
satisfaction. This may require a full reworking of the evaluation stack and careful
reconsideration of all associated metrics.

Are these questions within the realm of model developers or MLOps folks? Opinions
here may vary, but we believe that a healthy organization will encourage multiple
points of view and rich discussions on these questions.

Conclusion
This chapter has focused on establishing an initial viewpoint of model validity and
model quality, both of which are critical to assess before moving a new version of a
model into production.

Validity tests help establish that a new version of the model will not break our system.
These include establishing compatibility with code and formats, and making sure
that the resource requirements of computation, memory, and latency are all within
acceptable limits.

Quality tests help give assurance that a new version of the model will improve predic‐
tive performance. This most often involves assessment of the model’s performance on
some form of held-out or test data, with the appropriate choice of evaluation metric
suited for the application task.

Together, these two forms of testing establish a decent level of trust in a model and
will be a reasonable starting point for many statically trained ML systems. However,
systems that deploy ML in a continuous loop will require additional verification, as
detailed in Chapter 10.
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CHAPTER 6

Fairness, Privacy, and Ethical ML Systems

By Aileen Nielsen

This chapter is devoted to topics related to ethical considerations and legal obliga‐
tions when creating or deploying ML systems. We cannot offer an exhaustive source
of guidance on these topics, but this resource can point you in the right direction. At
the end of this chapter, you should have a good sense of fundamental ethical consid‐
erations for ML deployment as well as concrete language and conceptual categories
that will get you started in educating yourself more thoroughly in the domains most
immediately applicable to your own work.

Editor’s note: When we put together the list of topics for what
MLOps folks truly need to know, issues of fairness, privacy, and
ethical concerns in AI and ML systems were right at the top of
the list. However, we also knew that it was difficult for a group of
authors with strong industry affiliations to provide truly unbiased
views on these complex issues. Therefore, we invited Aileen Niel‐
sen, author of Practical Fairness (O’Reilly, 2020), to contribute
this chapter independently. While we gave feedback on drafts for
clarity, the views here are entirely hers, and she had full editorial
control on this chapter. You’re getting it straight from a world-class
expert!

We should also note from the outset that fairness and ethics in AI remain highly
contested topics. Indeed, one reasonable position right now is that a quite viable
approach to promoting fairness in computing systems is not to use AI/ML. However,
for those who find themselves compelled to do so, or who believe that this skepticism
of algorithmic solutions can be overcome in their specific use cases, this chapter
provides a starting point for understanding the challenges of how to do it right.
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1 Examples of designated human decision makers include judges as the formal decision makers in legal
adjudication, or university professors as the formal decision makers in grading decisions. Examples of no
clear decision makers include “flat” organizations, in which it can sometimes be unclear who holds final
decision-making authority.

2 As a general matter, we take issue with this undue narrowing of the concept of fairness, and for the sake of
clear communication, we address a host of other issues that we view as related to fairness in “Responsible AI”
on page 127. In this section, we focus on the mainstream use of fairness as exclusively related to bias.

What’s more, it should be recognized that in some cases existing or otherwise tra‐
ditional solutions to problems in the pre-algorithmic age (e.g., having designated
human decision makers, or no clear decision makers) haven’t always been great.1

For example, a great deal of empirical research suggests that race influences judges’
sentencing decisions and even informal decisions by store clerks as to whether to
allow customers to return items. Therefore, when we think about fairness and ethics
in AI and ML, we also have to recognize that they may very well provide improve‐
ments in some cases relative to human decision makers. So, despite the gloom and
doom you will find in this chapter, we also recognize from the outset that some
uses of algorithms have been tremendously successful in terms of increasing overall
fairness, even if there isn’t yet a clear solution to making AI and ML fair and just in a
guaranteed or global sense.

In this chapter, you will find sections that focus on specific hot topics—notably,
fairness, privacy, and Responsible AI. We recognize the primacy of these topics both
in terms of public awareness and concern as well as in terms of attention devoted
from industry and scholarly groups alike. A lot of development is occurring in these
areas, and we want to empower you to dive into these topics with a good initial
background that you can pick up from this chapter. Within this chapter, we also
provide notes on how you might consider refactoring work at your organization, in
practical ways, so as to enhance fairness and ethics in your own AI/ML work.

Fairness (a.k.a. Fighting Bias)
Algorithmic fairness, and other variations of this term, are a hot topic in ML and have
been for many years. When you read about this subject, you’ll most often see fairness
used as a concept directly related to bias—that is, as fairness being the absence of bias,
and bias being the condition of unfairness.2

For quite some time, ML researchers, legal scholars, and activists alike have manifes‐
ted growing concern about the possibility that ML could perpetuate existing social
biases, or even create new forms of bias. In framing such discussions, many have
emphasized that this could happen because data used to train ML systems could be
taken from biased systems or collected in a biased way. In short, people have made
arguments akin to the notion of garbage in, garbage out.
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3 “Machine Bias” by Julia Angwin et al. is the seminal study, published by ProPublica, that identified this bias.
This work, discussing the use of algorithmic risk scores in the US criminal justice system, is foundational in
the understanding of the kind of harms that AI can create and in launching the Responsible AI movement.
The article discusses the use of algorithmic risk scores in the criminal justice system in the US. The most
common use of these biased risk scores is to determine whether defendants should be allowed free while
awaiting trial in an overly burdened criminal justice system. The factor being predicted in this case should
be whether the accused will show up for trial and whether they will commit crimes in the meantime, not
generally at any point in the future. It is not clear that a single prediction about “will be accused of a crime in
the future” can be useful in decisions about bail, sentencing, and parole. This article discusses the COMPAS
algorithm, which is discussed in some detail later in this chapter.

But you should be careful to realize that the garbage in does not necessarily refer to
bad data. The garbage is the outcome that results from unrepresentative training data
or algorithmic bias. This is a key point: it’s important to realize that the fundamental
source of bias can come from many steps in the ML pipeline, including bad data, but
also including bad modeling choices. Here’s a nonexhaustive list of some commonly
cited sources of bias:

Sampling bias
In sampling bias, the process of collecting data itself has bias built into a sys‐
tem. A commonly given example is that marijuana use among white and Black
Americans is thought to be roughly equal, but the rate of arrests for marijuana
possession is far higher for Black Americans than for white Americans. This is
almost certainly due to (among other reasons) sampling bias. Because of racism
manifesting at both the level of individual decisions and at a systemic level,
Black Americans are far more likely to find themselves searched by police for
marijuana possession than are white Americans (some may be familiar with a
related manifestation of racism, driving while Black).

ML-relevant example:

Crime-prediction algorithms, such as those built to influence police patrolling
allocations, likely suffer from sampling bias.3 Across many nations and conti‐
nents, it remains a consistent pattern that policing is directed at communities of
low socioeconomic status. Data coming from such a process oversamples crime
in certain areas or among certain demographics and so likely misrepresents the
underlying base rates of crime in different communities due to this sampling
bias. Yet, this data, sampled in a biased fashion, then creates new biased inputs
for more ML modeling to allocate future police patrols. The algorithm likely
keeps sending police back to the same areas too often because other areas are not
oversampled in the same way.

Disparate treatment
Bias can result from individuals explicitly being treated differently. Disparate
treatment is banned both by the government and by some regulated areas of the
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4 This was one of several factors that led some governments, notably that of New York City, to propose
regulation of AI when used in hiring. See “New York City Proposes Regulating Algorithms Used in Hiring” by
Tom Simonite.

5 A larger debate arises about whether discrimination is “taste based” or “statistical.” Some argue that the
decision to attend a women’s college might in some way be indicative of a personality type that is relevant
to a hiring decision. However, such a hypothesis seems unlikely to apply. Those interested in learning more
can look to research literature in both law and economics about the mechanisms of and motivations for
discrimination, including disparate treatment.

private sector when there is no justified reason for it. In almost all examples of
disparate treatment on the basis of race (such as segregated schools or policies
of hiring only whites), courts have not found a justified reason for such discrim‐
ination (after the Civil Rights movement). For disparate treatment on the basis
of gender, courts have sometimes found that reasons offered to treat genders
differently (such as different performance thresholds for physical fitness tests)
could be justified by compelling interests.

ML-relevant example:

ML algorithms are often celebrated for their ability to spot patterns that elude
humans. However, sometimes these patterns are plain old sexism. Amazon
famously developed but did not deploy an in-house hiring algorithm that applied
a strong negative parameter for attending a woman’s college.4 Thus we see a case
of an algorithm using irrelevant factors to make a decision in a way that directly
discriminates against a group (in this case, women going to women’s colleges).5

If the algorithm had been used, this would have looked like a case of disparate
treatment.

Systemic bias
This source of bias can be challenging to both identify and mitigate as compared
to the preceding examples in this list. Broadly, we can think of systemic bias as a
host of factors that likely cannot be identified in individual cases as explanatory
features but that, on an aggregate level, clearly influence differences in outcomes
for individuals due to the structural limitations (limitations that are baked into
our social, educational, and employment systems, among others). AI systems
cannot be separated from the societal contexts in which they are built, so AI built
without an understanding of context is likely to worsen systemic bias. Indeed,
even the particular problems to which AI is applied are often highlighted as
themselves manifestations of systemic bias. For example, some have asked why
predictive policing has been actively used for so long to predict crimes among
socioeconomically vulnerable populations, while algorithmic systems to identify
or predict police misbehavior are relatively uncommon.
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ML-relevant example:

In training an ML system, sometimes features are selected because they seem to
provide “common sense” examples of “merit” as some employers or educational
institutions might conceptualize that notion. For example, middle class high
school students are often told to participate in extracurricular activities to show
that they are highly motivated leaders. However, using data about participation
in extracurricular activities (in an algorithm or in human decision making)
without additional context would contribute to a system that rewards middle
class students who have access to such possibilities. This system would likewise
disadvantage low-income students whose schools may not offer such activities or
who are not able to participate in such activities because they need to work or
contribute to family obligations. Thus what “common sense” dictates to people
unfamiliar with different social contexts and unversed in the consequences of
systemic bias could look quite biased once this additional information is incorpo‐
rated into the analysis.

Tyranny of the majority
This source of bias relates to the form of training process that is used. In many
commonly used modeling systems, the numerical majority category typically
affects training loss the most through total numbers. Therefore, if the modeling
process does not account for this, many kinds of models will de facto favor
the majority and minimize the error for majority groups more directly than for
minority groups. This same concern sometimes motivates the design of political
systems so as to protect minority interests specifically rather than trusting to
majority rule.

ML-relevant example:

It is well known that training ML systems with data that does not involve rela‐
tively equal distributions of characteristics (imbalanced datasets) can be quite
challenging if we seek to achieve good performance for all classes. Such a situa‐
tion is likely to arise when working with datasets that include different kinds
of people, as most contain some kind of imbalance in data, be it gender imbal‐
ance, racial imbalance, or other forms of human diversity, such as geography or
language. Therefore, modeling human behavior should require paying particular
attention to make sure that the model is giving everyone a fair shake rather than
modeling everyone according to a prototype that in fact is reasonably accurate
only for someone in the majority class.

Tragically, it remains indisputable that these forms of bias (and many others) con‐
tinue to pop up in a wide range of ML applications, even with increasing media
attention about algorithmic fairness. There are many reasons for this. Social biases
are widespread and are not always apparent at the individual level. Someone might
think they are making an unbiased decision both because they do not have all the
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details about the system in which they are making the decision, and because of
their own unconscious biases. This is not a problem that will be solved by a book
chapter, but one that a book chapter can make readers aware of and motivated to do
something about.

The ML/AI research community has been developing methods and techniques to
systematically identify and remediate some of these biases. Practitioners who are
trying to develop responsible and fair AI systems should be aware of these emerging
tools that might help. What’s more, ML/AI may very well provide a way forward to
make systems fairer than they have been with the use of unaccountable humans, so
long as ML development is done carefully and with appropriate safeguards, when
aimed at appropriate problems.

A Note on Solutionism
This chapter strongly emphasizes how complicated and difficult it can be to imple‐
ment AI in a fair and responsible fashion. One neat trick can help you avoid the entire
problem: don’t use ML/AI (if you can get away with it). Although many systems
undoubtedly work better with some degree of automation, that’s not always the case.
Sometimes the human touch is needed. Sometimes the human touch is even more
efficient, as well as fairer, than a machine touch.

And, if you do conclude that some degree of automation and algorithm use is
justified, make sure you ask yourself exactly how using that automation makes sense.
Most situations allow many degrees of use between full algorithm and full human,
so think carefully about what an algorithm should be doing even after you decide
whether an algorithm should be doing anything at all.

One of the bigger problems with ML is that it often adds complexity, risk, and cost,
with little value and no net advantage. We call these uses solutionism: merely because
we have a readily available (and trendy) solution (ML), we are trying to figure out
what problem it solves.

ML systems are necessarily complicated. They can accomplish amazing things when
applied well to problems that fit, but they can add enormous risk (and significant bias
or other forms of unfairness) to other kinds of applications. The smartest thing an
ML team can do is to consistently and skeptically consider whether ML is necessary
or useful at all. By doing so, we can confine our efforts to ML applications that truly
add significant value, and therefore are worth the effort required to ensure privacy
and fairness as we implement the system.

Definitions of Fairness
In the ML community, we have not cohered around a single definition of fairness, but
common categories exist that have intuitive and appealing descriptions. For example,
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6 We use scare quotes in this sentence because, of course, defining what or who is “the same” or “of equal merit”
is itself an exercise of judgment and not an objective truth.

7 For an accessible demonstration of the conflict between calibration and group parity, we strongly recommend
“Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments” by Alexandra
Chouldechova.

some definitions of fairness emphasize individual fairness. These notions of fairness
argue that, for two individuals who are “the same” other than irrelevant factors (race,
gender, etc.), these individuals should be treated the same.6 Other definitions of fair‐
ness emphasize that ML should look to fairness at the level of groups. That is, error
rates should be the same and of the same quality across groups, and overall the level
of performance should likewise be equally high among groups. Still other definitions
of fairness might get more complicated and look to establish causal mechanisms
to understand what might drive individuals to success or failure, before looking to
categorize them algorithmically.

Two common categories of fairness that are intuitive and appealing are group parity
and calibration-based assessments. These are far from being the only notions of fair‐
ness, but we select these two to discuss for two reasons. First, each of these definitions
is straightforward and has a strong intuitive appeal. Second, each highlights two
distinct notions of fairness.

As its name suggests, group parity emphasizes fairness as matter to be compared on
the basis of comparing groups. It puts emphasis on recognizing that outcomes for
individuals should be looked at, at least in part, on the basis of sensitive attributes
of their identity, and most particularly on legally protected attributes, such as gender
and race, but also on attributes that may not be legally protected but that some
consider morally important, such as economic status. There are good reasons for this,
including that when we look at the world, such features often turn out to be horribly
influential in actual outcomes.

On the other hand, calibration emphasizes individual fairness, which is another value
most of us find quite intuitive and appealing. We likewise feel strongly that individu‐
als should be treated on the basis of who they are and what they do as individuals,
and not based on where they come from.

It would seem that these two definitions of fairness need not be at odds philosophi‐
cally. In a perfect world, where groups and individuals are treated fairly, we would get
the same outcomes. Unfortunately, this turns out not to be the case in our imperfect
world, for a variety of reasons, including fundamental mathematical limitations.7 For
this reason—at least for now—practitioners must choose their definition of fairness.
As we will describe, different use cases will have different reasonable definitions of
fairness.
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While applying different notions of fairness in different situations may seem strange,
mature readers will realize that we likewise apply the same principles in real life.
Consider the US, a strongly market-driven economy. For the most part—and even in
our current era of populism—there tends to be a pervasive individualized notion of
fairness when it comes to the labor market. Americans seem to think people should
get what they can get on the open market, albeit with some concerns that wages
not go too low (thus, there is a legal minimum wage) and likewise with some con‐
cerns that the highest rates of pay have gone too high (demonstrated by increasing
concerns about rising inequality and the rise of the billionaire class). On the other
hand, when it comes to healthcare, most Americans think everyone should get good
medical care regardless of differences in individual health or inborn genetics.

It seems (at least to us armchair anthropologists) that at some level Americans are
comfortable with an allocation of economic benefits based, likely in part, on inborn
ability but are not comfortable with this notion when it comes to an allocation of
medical benefits. Thus, ordinary people in fact seem to commonly apply different
notions of fairness to different domains of life, and we propose that the same could
plausibly be true in different contexts or use cases of ML.

It might seem that the ML ethics community should be attempting
to converge on a single definition of fairness. This might seem
especially true when we can see that different definitions of fairness
are divergent or even contradictory in practice. At present, given
the state of maturity of the industry and this field, it is almost
certainly not a goal to converge on a single definition of fairness.
This is for two reasons.
First, we don’t need to. The state of the art of most models
deployed in the real world is still fundamentally unfair by any
metric (or at least of unexamined fairness). We have many useful
definitions of fairness to select from, and picking one or several to
work toward provides us with the opportunity for rapid progress
right away without needing to await further theoretical or legal
developments.
Second, and more structurally, the field of AI and ML theory is
currently largely controlled by people from the dominant groups
of society. These are the very people most likely to miss the ways
that AI and ML systems can negatively impact disempowered or
underrepresented groups. Surely, these same people shouldn’t be
the arbiters of what will be set down as the proper definition of
fairness to the exclusion of all others in the future.

Group parity fairness definitions require that relevant rates of algorithmic perfor‐
mance be the same across various groups. A group parity requirement could, for
example, require that the hiring rate across all ethnic groups be the same, but might
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8 See the Chouldechova paper referenced in the preceding footnote.

also require that the accuracy for diagnosing low oxygen be the same regardless of
skin color. This idea is compelling and intuitive because it paints a picture of the
society many of us would like to see—one in which bad luck or opportunity are
distributed equally among communities.

In contrast to group parity, calibration fairness definitions require that a ML model
work equally well for all individuals. While this cannot be directly measured, what
can be measured is that a model score means the same thing for an individual
regardless of their group membership. So a calibration-oriented definition of fairness
would require that for any group, the ML score means the same thing.

This sounds intimidating and highly technical, but it can be easier to digest with
a specific example. A commonly given example of calibration is that of the Correc‐
tional Offender Management Profiling for Alternative Sanctions, or COMPAS, recidi‐
vism scoring algorithm, which is used by criminal courts in many US states. Because
this algorithm has been shown to be calibrated correctly across racial categories, the
same COMPAS score (say, 0.5) means the same thing for both Black and white data
subjects: that is, a white offender and a Black offender with the same risk score have
the same probability of reoffending.8 When understood in plain English, this seems
intuitive as well—that a model score should mean the same thing for everyone, no
matter what group they belong to.

You may wonder whether having many definitions of fairness is a problem. After all,
there are many correct and intuitive ways of describing the world in other contexts,
so why not in the case of fairness? The difficulty comes from the fact that—at least
in the world we currently live in—these definitions of fairness come into conflict.
The COMPAS algorithm is a compelling example. That algorithm was not necessarily
implemented in a careless fashion, but was, in fact, sometimes adopted as part of
a movement to reduce bias in the criminal justice system. The algorithm passed
calibration checks that were considered to be the gold standard in ensuring fairness
and nondiscrimination.

However, reporters at ProPublica, a nonprofit newsroom, later demonstrated that—
despite this calibration—the algorithm had higher rates of false positives in labeling
Black defendants high risk, and higher rates of false negatives in labeling white
defendants low risk. In other words, Black defendants were more likely than whites to
be labeled as having a high probability of a violent re-offense and then not go on to
commit such a re-offense, while whites were more likely to be labeled as having a low
probability of re-offending but then going on to in fact re-offend.

This led to a public outcry, prompting many mathematicians and computer scientists
to work on the problem. However, scholars quickly realized that their goal—of
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9 If we look for and interpret questions about algorithmic fairness broadly, other impossibility theorems are
related to fairness concerns. For example, Arrow’s impossibility theorem demonstrates that three intuitive
fairness criteria for a specific form of voting cannot all be met at the same time. These three criteria, stated
quite roughly, are that (1) universally shared individual preferences between two options will necessarily
translate into an election outcome reflecting that preference, (2) stable individual preferences will translate
into stable election outcomes, and (3) no single voter will possess the power to determine the election
outcome. Thus it is a common problem across disciplines and technological or organizational mechanisms
that we cannot always have our fairness cake and eat it too. Many thanks to Niall Murphy for this example.

making a risk score that demonstrated both calibration and statistical parity–was
impossible with most real-world data. Statistical parity and calibration cannot be
mathematically satisfied at the same time, unless base rates of events are the same
in each group. However, equality of base rates is a condition rarely met in the real
world.9

Mathematically, not all fairness definitions can be satisfied at the same time, given
real world conditions. We have to decide which fairness goals to pursue in an ML
context, and likewise decide whether focusing on a specific fairness metric might
even tend to reduce the tendency toward a holistic viewpoint that might otherwise be
more helpful in enhancing fairness and other ethical values.

For now, we consider that for a specific ML tool, it may make sense to choose and
emphasize a particular fairness metric, while recognizing that it will not be possible to
satisfy all intuitive and normatively desirable notions of fairness at the same time.

We do not want to allow perfection to become the enemy of the good. Rather,
practitioners have found that having many definitions of fairness is more actionable
than having none, and that working toward a metric of fairness is broadly likely
to enhance many other forms of fairness as well. What’s more, some researchers
have recognized that different situations may call for different fairness metrics, given
the relative harms or policy goals of a particular use case of an algorithm, and so
interested readers can find useful guidance as to how to choose a fairness metric for a
specific task given specific concerns about the likely consequences of various kinds of
mistakes.

What Are Normative Values?
Normative values (or, in short, norms) are deliberate choices that individuals or
societies make as to what is morally or socially desirable, and also as to what is
not acceptable. Normative values are distinct from empirical realities. A normative
statement is about what should happen in the world, while an empirical statement is
about what does happen in the world.
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10 For example, individuals from a favored group who receive an improbably favorable outcome given their
merit.

An empirical statement relating to algorithmic bias could be that algorithmic bias
causes economic inefficiency because, for example, deserving job candidates are
weeded out and thus lost as hiring opportunities. Such an empirical statement does
not make a value judgment but simply observes the world as it is. In contrast, an
example normative statement could be that algorithmic bias is wrong because all
equally qualified people should have an equal chance at a job as a matter of funda‐
mental fairness. This example normative statement doesn’t look to describing the
results of a social phenomenon but rather purports to judge that social phenomenon
or offer proscriptions about what should be changed about that social phenomenon.

Of course, normative values can be difficult to articulate and defend when it comes to
implementing them in practice. For example, the statement that all equally qualified
people should have an equal chance at a job obscures the tricky question of what
“equally qualified” means and whether jobs should always go to the most equally
qualified applicant. There might be some other notion of a more deserving appli‐
cant in some scenarios. Consider that in a family business, many would consider
it fairer to hire a reasonably well qualified family member rather than a slightly
more qualified stranger. On the other hand, others would argue against this policy as
entrenching nepotism and inequality. And so, we can see how different sets of similar
but not identical normative values can lead to conflicts that will continuously surface
in real-world debates and decisions about the best way to enhance fairness in society.

Reaching Fairness
Concretely, a classic ML setup has three modes of working toward fairer (less biased)
outcomes. Here we provide a flavor of how these work, so you can approach the liter‐
ature with an overview and understand the benefits and costs of different approaches:

Preprocessing
These methods intervene in data rather than in models. Preprocessing methods
take multiple approaches to reducing unfairness in the inputs into ML training.
Most bluntly, data points can be relabeled. For example, some approaches, such
as that of Kamiran and Calders (2011), offer ways of identifying data that should
be relabeled because the data suggests a biased outcome.10

Another, less drastic approach, is to seek a representation of the data that reduces
information about the group to which an individual belongs; an approach pio‐
neered by Zemel et al. (2013), for example, proposes describing the data such that
an individual’s sensitive attributes can no longer be guessed accurately. Because
these methods look to the data as the point of intervention, they are model
agnostic. A general rule of thumb is that intervening at the earliest possible stage
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in the ML pipeline is most likely to yield best results (and leave options open for
subsequent additional interventions).

But, there are, of course, valid concerns about preprocessing approaches. Chang‐
ing the data labels aggressively challenges a data-driven discipline, such as ML,
in fundamentally removing information. Likewise, methods that look to “trans‐
form” the data rather than directly manipulate the labels also challenge the
fundamental tenets of a data-driven approach when data is deliberately removed
or changed. Also it can be difficult to identify exactly what about the model
changes as a result of changing the data, since in most cases it will not be possible
to know all that clearly affects the relabeling a few data points.

In-processing
These methods intervene during model training. This can manifest in any way
in which the actual step-by-step training of a model is affected by fairness
considerations. In many cases, this has been addressed through adjusting the loss
function used during model training. Various “penalties” can be added to reflect
the fairness costs imposed by biased outcomes, as is reflected in the work of
Kamishima et al. (2011). Such methods are similar to regularization techniques.

Another method is similar to that described in preprocessing (learned fair repre‐
sentations) in terms of motivation to remove identifying information from the
model’s knowledge about the sensitive attribute. An adversarial model is trained
simultaneously with the model of interest, such that the adversarial model’s target
is to guess which sensitive category an output is associated with. The model of
interest is trained to a task but also optimized to reduce the information that its
outputs transmit to the adversarial model. Some of these methods, such as the
work of Zhang et al. (2018), can be model agnostic.

Post-processing
These methods intervene on the model’s labels rather than on the model directly.
In this way, they correct outcomes from the model based on meeting certain tar‐
gets. An examples of post-processing is introducing randomization, as in Hardt
et al. (2016), in the case where—without such randomization—false negatives
might be different among different groups (an example of applying group parity).

Another example of post-processing is to set different thresholds—say, for a
credit score or college admissions scores—for different groups such that the
predictions or decisions made with the score can be equally accurate for different
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11 This can sometimes be understood as a way of correcting where calibration is lacking. For example, it is well
documented that credit scores used in the US do not seem to mean the same thing across racial groups with
respect to propensity to repay. So banks that rely exclusively on the score and do not adjust the thresholds
could inadvertently label credit seekers with false-negative rates that are different by racial group. However,
different thresholds for different groups necessarily raises other legal and ethical concerns. And so, the reader
can see that fairness in the real world can be quite challenging indeed.

12 At the time this book is going to press (August 2022), Europe has put forth a wide range of groundbreaking
legislation on a host of issues that relate to fairness in digital environments, including AI. Most notably,
the EU published a proposed AI regulatory framework in April 2021 that would entail a risk-based set of
regulations, with different legal requirements for different levels of risk from an AI use case. The proposed law
would also ban certain high-risk use cases, including social credit scoring. Likewise, China brought sweeping
new AI regulations into force as of March 2022 to regulate a variety of common practices that disadvantage
consumers, including price discrimination on the basis of personal information and content-aggregation
algorithms.

groups.11 Because these methods intervene after a model has run, they are model
agnostic.

Which method of intervention to choose depends on a variety of factors. In some
cases, an organization may need to apply a specific stage of intervention because
that is the intervention over which they have control. For example, an organization
may have received a pretrained neural network that it will fine-tune. Since the organi‐
zation doesn’t have access to the original training data or method, post-processing
might prove a more viable option.

On the other hand, another organization might find that the options offered by post-
processing are normatively problematic because they violate certain fundamental
values held by some people. For example, people may be uncomfortable with the idea
of having explicitly different score cutoffs for different groups, and they also might
be uncomfortable with the notion of eliminating, and replacing with randomized
numbers, those outputs from an algorithm that are, in fact, likely to be correct.

To date, there are no well-established guidelines from regulators or prominent ethical
leaders regarding the best way to intervene,12 and we suspect that this will have to be a
highly context-sensitive analysis. But the need for highly contextualized case-by-case
decision making is no different from other elements of running an organization
or making decisions that affect other people’s lives. Algorithms will help increase
efficiency and uniformity, but there will never be a single go-to algorithmic fairness
solution for all scenarios.
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Algorithmic Fallbacks for Fairness?
As you will read about in other chapters of this book, sometimes an algorithm’s
performance will be obviously or catastrophically bad. Other times an algorithm may
be unavailable. In such cases, you’ll need a fallback. A technical fallback can be a
helpful idea for fairness-related concerns too.

Here are a few scenarios where you might want to suddenly cut access to an algo‐
rithm and have an algorithmic fallback in place:

• A human user reports an algorithmic output so offensive to basic notions of fair‐•
ness that the system should be completely unavailable until an audit determines
the source of the problem and corrects that source.

• Continuous monitoring systems you have wisely put in place indicate a drift of•
results beyond acceptable fairness thresholds (for whichever fairness metric you
have chosen).

• The algorithm recommends such a drastic (or possibly harsh) output that you•
send the output for human review prior to making the output available to the
decision subject.

In these and other such cases, you could have a variety of algorithmic fallbacks in
place, including the following:

• Temporarily using a nonalgorithmic solution. For example, consider giving•
everyone the same output—perhaps the average output from the algorithm—
while you sort out the algorithmic issue.

• Shunting the algorithmic outputs to a human reviewer and having a prompt to•
“please wait until we can contact you.”

• Radical transparency in which an appropriately tailored error message is pro‐•
vided: “Sorry our algorithm is having some trouble, and we don’t want to give
you irresponsible outputs. Check back later.”

Fairness as a Process Rather than an Endpoint
This is a difficult set of topics, and it can be strongly discouraging to know that AI
can and does cause so many harms. Don’t let this bad news dissuade you from all of
the advantages that can be achieved with a thoughtfully engineered ML/AI system.
The news about fairness doesn’t have to be bad.
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Let’s consider two problems:

• Fairness wise, you can’t please everyone. There is no “perfectly” fair solution to•
any algorithmic fairness challenge (at least none has been identified so far).

• Likewise, there is no perfect way to enforce fairness even if you do settle on a•
particular definition of fairness (that is, defining a metric doesn’t guarantee you
can make a model perfectly conform to that metric or indicate how you should
attempt to do so).

Let us rebut both of these points in terms of their relevance to your choices in your
ML modeling:

• You have many good fairness definitions to choose from.•
• Any process to work toward fairness is far better than a world in which we ignore•

these issues—because ignoring hasn’t led to good outcomes.

It can be helpful to think of fairness as a process rather than a specific endpoint.
While this can be disappointing to those who like to think they can build an ML
algorithm to solve a business problem and move on, the reality is more complicated.
Products take upkeep for many reasons. The world changes, and so deployment
conditions change, and so models must evolve. Fairness is no different.

A Quick Legal Note
It is far beyond the scope of this work to provide legal guidance; that is what your
company’s legal department is for! Nonetheless, it is worth mentioning that despite
the seeming newness of algorithmic fairness as a topic, the concept of discrimination
has had an important and explicit place in law for centuries in one form or another.
The topics most in the forefront today, such as racial and gender equality, have
likewise occupied a prominent role in law for decades. This has especially been
the case in areas of civic life that are understood as core to human life, such as
employment, education, healthcare, housing, and access to financial credit services. If
you are doing ML work that touches on these core areas, you likely need to be deeply
concerned about fairness—and, specifically, about fairness as it is implemented in
your nation’s antidiscrimination laws.

Privacy
Privacy is a notion that has proven notoriously difficult to define in scholarship.
Privacy measures have therefore proven difficult to create, particularly with respect to
future-proofing. The rise of big data has proven a dramatic example of this.
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13 For an early example of reidentification, see “‘Anonymized’ Data Really Isn’t—And Here’s Why Not” by Nate
Anderson, describing Latanya Sweeney’s work on the topic.

Experts used to think that de-identified data was appropriate and safe to release. Such
data would have removed what was thought to be identifying information, such as
name or address, that could easily be matched to a person. However, information
about other factors associated with, but seemingly not directly related to, a specific
person’s identity was still released, such as birthday, race, or zip code.

With the advent of big data, many datasets were compiled, often about overlapping
groups of people, and it then became possible to use different datasets together to
identify people from de-identified information. For example, for most Americans,
it turned out to be possible to identify them in a de-identified dataset merely from
knowing their birthday, zip code, and gender.13 And, the world is increasingly full of
new datasets, sometimes resulting from data breaches but other times resulting from
people voluntarily sharing information about themselves—information that becomes
very easy to access by any casual creepy stalker. We might like to think the world is an
anonymous place, but it simply isn’t the case today.

Two key ideas about privacy are described here, both in terms of how they relate
to a notion of privacy, but also in how they relate to taking an existing dataset
with personal information and turning it into a dataset that can be used or released
without compromising individual identity:

k-anonymity
The idea behind k-anonymity is that in a given dataset, for any given combina‐
tion of categories of interest, there should be at least k individuals (externally
specified) who fall into any given bucket. So, for example, we could apply
k-anonymity to a dataset listing individuals in a town by requiring that data
be bucketed such that for any zip code / birth information / gender category,
there were at least 10 individuals. There might be many ways to accomplish this.
Two potential opportunities would be to report birthdays at the month or year
level and to report only the first four digits of a zip code rather than all five.

This notion of privacy and preventive measure essentially conceptualizes privacy
as not being in too small a group within a dataset. Recommended size is at
least 5 in the medical domain, although k sizes far larger (even greater than 50)
have been reported. The appropriate size for k will depend on the particular
domain, which could have different implications regarding sensitivity of the data,
possibility to build useful datasets with large k, and possibility of reidentification
given other known potentially linkable datasets.
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14 Querying a differentially private dataset many times can lead to violations of the differential privacy guaran‐
tees. This is because such guarantees are valid with only a given privacy budget, which limits the number of
queries that can be made while ensuring differential privacy guarantees.

15 In theory, we could retrain a model entirely every time a bit of training data was marked for deletion. In
practice, that would be wildly wasteful and impractical—and also possibly unnecessary. More work needs
to be done in this area to understand how technical needs, sustainability concerns, and individual rights to
privacy can successfully coexist.

16 One reason that differentially private modes do not achieve the highest levels of accuracy relates to the
methods used to create differentially private models. One key technique is noise injection, which by definition
reduces accuracy.

Differential privacy
This mathematical method adds noise to data such that probabilistic guarantees
can be made regarding the possibility (or more importantly, lack of possibility)
to make inferences about a specific individual when given access to that noisified
data. The idea behind differential privacy is that it would be a privacy problem
for one individual’s inclusion, or non-inclusion, in a dataset to influence opera‐
tions, such as the calculation of averages or other statistics, so that the dataset’s
information could be inferred based on aggregate reporting. So for example, if
the mean age of a class is reported and the size of the group, with and without
an individual, it is possible to know that individual’s age. However, if differential
privacy is applied, it would, in probability, not be possible to infer that individ‐
ual’s age at a pre-specified level of precision and given a pre-specified query
budget.14 Differential privacy can apply quite broadly, not just to the computation
of aggregate statistics but also to the training of ML models, with methods to
ensure that a model’s outputs or training is not contingent on inclusion of a
particular data point.

These notions of privacy may seem quite technical, but are relevant to real privacy
problems, such as managing the responsible and privacy-preserving release of open
datasets or ensuring that legal rights have a meaningful technical translation. For
example, the EU’s GDPR gives an individual a right to data deletion. However, if
an ML model has already been trained, that right to deletion may not be entirely
meaningful. For example, does an individual’s right to delete their data mean that
they can also force a company to prove that its ML models have also “forgotten” their
data?15

Some have explored how training models with differential privacy might address
this concern. However, technical challenges remain because producing ML models
with differential privacy guarantees is quite a technical challenge. It is challenging to
ensure both differential privacy and a high level of performance at the same time.16
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17 One recommended starting point is TensorFlow Privacy, which includes training algorithms for differentially
private models.

Methods to Preserve Privacy
The definitions and scenarios described previously with respect to k-anonymity
and differential privacy refer to very specific notions of privacy and computational
measures. And, indeed, privacy is itself a highly technical and specialized field,
perhaps best left to experts in terms of implementation.17 However, a variety of acces‐
sible privacy-enhancing measures are transparent, straightforward to implement, and
meaningful. You should include them in your own workflow and will likely need to
customize them.

These are likely to already be familiar concepts to systems administrators and those
who deal with compliance issues. However, these sometimes are painfully unfamiliar
to data scientists and ML engineers. It is my hope that they will become part of basic
project specification and daily practice and consideration in the future.

Technical measures
The following are some technical measures to take:

Access controls
A key way to preserve privacy and reduce threats is to implement robust access
controls. Any data about people in a database should be treated as a “need
to know” resource, with ML engineers requesting access for specific purposes
rather than being able to freely access or browse data. Likewise, access should be
revisited periodically to make sure that staff members do not retain access to data
for which they no longer have a valid active reason for access.

Access logging
Keep track of who is accessing specific forms of data and when. This makes
it possible to understand data use patterns, see when someone might be inap‐
propriately accessing data, and preserve evidence in case allegations of inappro‐
priate use are made later. An analysis of such logs may also indicate ways in
which data storage schema could be refactored to reduce the extent of data that
different use patterns can access. For example, if an ML model calls for access
to a sensitive table of data merely to access one column, consider splitting off
that column of data rather than granting access to a full table of additional but
unnecessary pieces of information.

Data minimization
The collection and use of data should be minimized. Data should not be collected
merely because it “could be useful” in the future. Data should be logged only
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18 A separate question is when click prediction is a useful activity and when it raises troubling AI concerns.
No doubt, predicting someone’s preferences or interests has beneficial uses, as is the case for many examples
of click prediction. On the other hand, increasing research both on the mutability of human preferences
generally and on the particular scenario of manipulation of behavior and preferences in online environments
also points to the danger of confusing click prediction that represents preference accommodation (giving
people what they want) with preference manipulation (making people want what you have). The latter
obviously has lots of fairness concerns and is related to a growing literature on dark patterns, which are digital
design patterns that tend to lead users of digital products to do things that are against their interests (but in
the interests of the designers of those products).

19 Of course, the inclusion of demographic information may prove problematic, as some datasets may have
a strong prediction relationship between seemingly anonymous information and PII, and this should be
factored into the way data separation is conducted.

when there is an immediate use case for this data (preferably, with some benefit
to those about whom the data is collected).

Data separation
The data needed for legitimate business uses should be separated from sensitive
data (such as names and addresses) that is unlikely to be relevant to creating
an ML model. For example, to predict users’ clicks, there doesn’t seem to be
a justification for knowing a user’s name or address.18 Therefore, there is no
reason for that information to be stored with information that might be useful
for that particular prediction task, such as past browsing history or demographic
information.19 As noted previously, studying your data access logs can help you
identify ways in which data storage can be refactored to minimize exposure of
data to ML applications.

Institutional measures
Here are some institutional measures available as well:

Ethics training
Everyone needs ethics training when they enter a new domain, and the same goes
for designing ML products. ML engineers should be given—but usually are not
—a thorough review not only of general ethics training (such as the possibility
of bias in data) but also domain-specific training when building algorithms for
a specific use case. Too often organizations do not have any formal discussions
or training about privacy or ethics more generally, and even basic training, no
matter how “corny,” serves to bring the issues to the fore.

Data access guidelines
In addition to technical measures already described, it makes sense to have
explicit rules that are readily available regarding what constitutes appropriate
access to data and use of that data and what use cases are expressly prohibited. A
lack of clear and explicit ethics rules can lead to an institutional culture without
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accountability. Organizations should have clear data access and appropriate data
use guidelines in place in a location that is readily apparent and accessible.

Privacy by design
Privacy by design is a set of design principles that can apply to any digital
product, including ML pipelines and ML-driven products. The notion of privacy
by design is that privacy is something that shouldn’t be tacked on to the end
of a process that already exists. Rather, privacy should be intrinsic to design
considerations from the start and should be a question and concern addressed
at all working stages. Privacy by design can provide a flexible but holistic way to
ensure privacy in all elements of ML development.

While these may all seem like basic and obvious notions, few organizations, large or
small, do these basic things, or even pursue anything akin to a privacy or fairness
agenda. Whether you are at a startup, an academic institution, or a large corporation,
there is almost surely something you can contribute to enhance privacy in your
organizer’s ML pipeline.

Data Access Guidelines
If you’re in an organization that lacks formal data access guidelines, here’s a short list
to get you started:

• No personal use of data (i.e., no looking up whether your cousin has ever ended•
up in the database)

• No examining data of someone you know (same point about your cousin)•
• No analyses you wouldn’t want to see the light of day or that could cause a PR•

problem (think of Uber’s misjudged blog post on “Rides of Glory”)

In short, there are a variety of ways to protect privacy by taking concrete steps in your
organization. Unfortunately, these steps are rarely taken, but they can be simple and
effective. You have nothing to lose (and lots to gain) by initiating such simple efforts
in your own workflow.

A Quick Legal Note
It is far beyond the scope of this work to give an extensive review of privacy laws that
usually affect digital products. Here we highlight a few key categories of laws that are
related to privacy and ML:

Data breach notification laws
Data breach notification laws require those who hold data to notify people
whose data they hold if that data was compromised in a data breach. To ensure
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compliance, such laws usually apply strict penalties if a holder of data becomes
aware of a data breach and does not make the appropriate notifications. Such
laws can sometimes also apply to a data holder who should have been aware of
a data breach, to ensure that firms cannot simply choose to remain ignorant.
Empirical research to date suggests that such laws have not prevented data
breaches from becoming increasingly, even exponentially, more common over
time. Nonetheless, such laws are useful in providing notice to consumers as to
when they may be most at risk because of exposure of their personal data.

Data protection and personal privacy laws
The most prominent example of data protection law is the EU’s GDPR. Many
countries around the world have data protection laws that give people basic
rights, such as the right to know what data is collected about them by online
venues, what the venues do with that data, and whether the data is even correct.
Some laws even go further, giving consumers the power to opt out of data collec‐
tion, or even giving consumers the right to have data deleted or blocked from
data sales. Unfortunately, empirical research has shown that such laws appear to
be widely disregarded in consumer-facing applications. Nevertheless, such laws
give consumers active ways that they can take steps to protect their privacy.

Laws against unfair and deceptive practices
This category of more general consumer protection law is important in the US
context, since the US otherwise lacks a comprehensive national personal data
privacy regime. The US Federal Trade Commission, an important source of
consumer protection enforcement, has sometimes brought actions finding that
companies infringed basic expectations of fairness or honesty in their business
practices as a means of protecting consumer privacy. A key example of this
is companies that do not even respect the terms of the privacy policies they
themselves author and leave on their websites. Thus it is—at the least—essential
to ensure that, as your organization builds out data collection and ML modeling
capabilities, you ensure that such practices are consistent with public-facing
privacy policies and terms of service.

Responsible AI
Responsible AI has come to be used as a catchall for ethical concerns we should
contemplate when training or deploying an ML system. This is a growing area, and
it’s safe to assume that neither industry nor the academic community yet has a firm
grasp on the scope of harms that should be, or can be, addressed by Responsible AI.
Here, under this rubric, we address some additional questions that have received a
good deal of attention in recent years. However, we emphasize that the issues here are
highlights. We do not purport to offer an exhaustive list of Responsible AI values.

Responsible AI | 127



20 A good starting point for understanding the centrality of explainability to Responsible AI, but also the
complexity of getting it right, is “Explaining Explanations in AI” by Brent Mittelstadt et al.

Explanation
ML model explanation is the process of analyzing and presenting information about
an ML system to describe how that system works. This process and the goal of
making the model amenable to human understanding is often discussed in shorthand
as explainability, and it’s a key area of interest with respect to ML. Many people have
a desire to understand why an ML system is working the way that it does as part of
understanding why it has reached a particular outcome that affects them.20

For both technical and ethical reasons, it is desirable to have methods that can
“explain” how an ML model works or why it reached a particular outcome in a
particular case. The technical motivation for explainable AI is related to controlling
model quality and possibly learning about the data through the model. Technologists
who develop explanations of their models can gain insights into why their model is
working well or poorly, and may even learn something about the underlying domain
of the data. Ethicists and advocates who seek explainable ML have similar concerns
but for different reasons. They find it empowering to know how a model came to a
conclusion, so that the conclusion can make sense to those affected by it, or even be
challenged where the ML conclusion doesn’t make sense.

However, explanation is not a simple thing. Explanations can serve any of a number
of purposes and therefore quite a wide variety of information can constitute an
explanation, depending on the purpose for which it is sought and the audience for
whom it is prepared. In this way, model explanation can feel a lot like thinking
through the problems that highly trained professions, such as doctors or lawyers,
face in trying to give advice or a diagnosis of a real-world situation to a particular
audience. For example, when doctors explain a recommended treatment and its
associated risks, they will tune the explanation to their audience. They’d probably
give one explanation to a fellow physician, another less technical but still rigorous
explanation to a patient known to have a bioengineering degree, and still another to
a person who was suffering from dementia but who might still be competent to make
their own medical decisions. Thus, we can see that an explanation depends on the
audience or consumer of that explanation.

The explanation that is provided also depends on its purpose. If the purpose of an ML
explanation is to inspect model quality, such as to make sure the model is making the
right decisions for the right reasons, then a global explanation might be preferred. A
global explanation indicates how the model works generally and why certain general
decision rules will be followed. On the other hand, if the purpose of the explanation
is to enable a specific person who was refused credit (or had another undesired
outcome) to know why in a way that could help her improve her chances in the
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21 “Explainable Machine Learning for Public Policy: Use Cases, Gaps, and Research Directions” by Kasun
Amarasinghe et al. provides a great and accessible example of considerations that go into what kind of
explanation is likely to be useful.

future, that person would want a local explanation. A local explanation explains why
that person in particular was refused and the most actionable adjustments to possibly
make in the future.

We won’t get into more detail on explanations for the moment. For our purposes
here, we want you to walk away understanding these key points:

• There is no one single correct explanation of a model.•
• Explanations need to be tuned to audience and purpose.•
• Explanations need to be useful and sometimes actionable.•

In terms of what you should do concretely, the following could be the minimum steps
to take at the start of your journey to get better acquainted with ML explanation
techniques:

• At the least, it is helpful for an end user to know the inputs used for an algorithm•
(even this minimal information is often not available). It is even better if you can
provide a list of relative feature importances. This would be most meaningful if
placed in a prominent location and in accessible language so that ordinary people
can see and understand the model.

• Another easy way to get some intuitive and concrete information that can be•
explanatory is to generate test inputs, perhaps counterfactual pairings, and see
what these look like. For example, some counterfactual pairings shouldn’t mat‐
ter for some use cases (e.g., gender counterfactuals should not change credit
decisions), while others most certainly should (e.g., body weight counterfactuals
probably will often change medical intervention decisions). These can constitute
a basic smell test as well as a way of providing example explanations to those who
are the decision subjects.

• Contemplate whether you can offer global (explaining the model overall) or•
local (explaining a particular ML model decision/classification) explanations and
explore a few techniques for doing so. Is a certain technique particularly appro‐
priate for your audience and the kind of decisions your ML product is making?

As various explanation techniques have emerged, some researchers have offered
useful guidance as to what systems might serve different purposes and be appropriate
to use.21 The most important consideration is to determine the level of sophistication
of the end user of the explanation and the purpose of providing an explanation.
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22 IBM’s AI Explainability 360 library is an easy-to-use open source library that includes a wide variety of
cutting-edge research methods for model explanation. The toolkit provides an API as well as tutorials that
provide a wide range of example use cases for applying methods from the library via the explainability API.

23 Consider as an extreme example Poland’s rollout of a classification algorithm to categorize unemployed
job seekers into three categories. An initial algorithmic assessment was made, from which staff could, in
theory, deviate. In practice, they deviated from the algorithmic label in only 0.58% of cases. See “Profiling the
Unemployed in Poland” by Jędrzej Niklas et al.

From there, you will often be able to identify at least one, and usually more, technical
options, some open source and already implemented by experts.22

Effectiveness
ML effectiveness—that is, an ML product actually achieving its desired target, and
for the right reasons—is key to responsibly deploying ML. Yet, as highlighted quite
famously by Cathy O’Neil’s Weapons of Math Destruction (Crown, 2016), a particu‐
larly worrying element of ML is that in many deployment scenarios, ML can be
a self-fulfilling prophecy: ML might appear to work, but this could be for entirely
wrong reasons.

Consider, as O’Neil did, ML products for hiring purposes, in which candidates can be
flagged to be rejected automatically. Perhaps the ML algorithm is correct that some‐
one would be a bad hire, but, also quite likely, we may never know whether someone
was a good hire because we didn’t hire them. But if a variety of ML algorithms are all
using the same logic to not hire a particular candidate, that candidate never gets the
chance at a job, and we never actually know whether that candidate could have done a
good job (systematically missing data).

If someone is labeled by a ML algorithm in a particular way, sometimes that label
is trusted to settle the issue, even if humans are supposed to be exercising some
level of supervision.23 In the employment scenario, someone could be labeled a poor
candidate and not be hired by the human who is using the algorithmic assistance.
That job seeker is perhaps not hired only because the algorithm labeled them as a
poor option rather than because they actually were a poor option. And perhaps the
use of the same or similar algorithms across many potential employers makes the
situation even worse. Perhaps that job seeker will face the same algorithm deployed
by many potential employers, thus facing an extended or even indefinite period of
joblessness. At some point, their extended period of unemployment will itself become
another factor that an ML algorithm is likely to use as a flag against hiring someone.

This concern isn’t just limited to scenarios that O’Neil identifies in potential anec‐
dotes. Lawmakers too are concerned. For example, in the recently proposed Algorith‐
mic Justice and Online Platform Transparency Act of 2021, US Senator Ed Markey
and US Representative Doris Matsui have proposed that only safe and effective
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24 The full quotation from the bill is, “An algorithmic process is effective if the online platform employing or
otherwise utilizing the algorithmic process has taken reasonable steps to ensure that the algorithmic process
has the ability to produce its desired or intended result.”

algorithms be legal. The effectiveness of an algorithm would be established by show‐
ing that the ML algorithm “has the ability to produce its desired or intended result.”24

Given this law, or similar requirements of efficacy, we can think through how O’Neil’s
example of self-fulfilling hiring algorithms could play out. The designer of a hiring
ML algorithm should show that the algorithm actually predicted who would be a
good employee, rather than simply who was unlikely to be hired. One way of thinking
about this is external validity—that is, the notion that the findings or conclusions
that power an algorithm translate to a general and real-world concept that matters. A
requirement of showing efficacy is akin to a requirement that the algorithm’s logic is
externally valid, that it generalizes to some reasonable degree.

Self-fulfilling algorithms are, of course, not the only concern related to algorithmic
effectiveness. Some other terms related to this concept are briefly described here:

Robustness
Algorithms can be effective only where they are resistant to foreseeable attacks or
misuse and are designed to limit or prevent such foreseeable abuse.

Validated performance
Models must work in their deployed use cases. Models should be checked for
good performance anytime they are deployed in a new situation, such as on a
new population, or even simply being applied over a lengthy period of time.

Logic
While some celebrate ML on the basis that such models can “find patterns that
humans can’t see,” sometimes the patterns identified don’t make any sense, or
make sense for the wrong reason. If the logic of a particular input’s relevance
doesn’t pass a basic smell test, it’s time to ask questions. Requiring some degree of
logic is also consistent with Responsible AI goals related to efficacy.

Social and Cultural Appropriateness
Another element of consideration for the responsible use of ML relates to the accept‐
able use of technology more generally in social situations or with social ramifications.
Are all roles, as observer or decider, appropriate for a machine? For example, would
you want to be told that you were going to die of a terrible illness…by an algorithm?
Likewise, do you want your child “watched” by an ML product or by a human
babysitter? Perhaps the answer is that you don’t care, and perhaps the answer is
that you do. Sometimes, when people refuse algorithmic products it is because of
ideas related to human dignity or social respect, rather than safety concerns about an
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algorithmic product. That is, just because something can be automated well doesn’t
guarantee that people will feel respected when they are interacting with an algorithm.

These cultural concerns about human dignity can apply to the users of an ML
product, rather than merely the subjects. Consider, for example, a recent Twitter
Responsible AI study in which the team ultimately concluded that the best way to
make a feature fair (in this case, a photo-cropping feature) was to remove the feature
rather than refine it, in part to encourage autonomy and agency by those who were
posting photos. Sometimes the best solution is the remove a technical “solution.”

Responsible AI Along the ML Pipeline
The various specific concerns related to Responsible AI that we’ve discussed previ‐
ously will necessarily overlap in the course of a real-world ML pipeline. In this
section, we include specific points to consider relating to pragmatic questions you
should pose to yourself and your team, depending on where along the ML pipeline
you find yourself.

Use Case Brainstorming
If you are brainstorming potential use cases, perhaps because you see a new business
opportunity or see the possibility of obtaining new data, you should be thinking
about the following fundamental questions related to your potential project:

• Is this a use case that will undermine privacy, and if so, how will you take•
precautions from the start to build in privacy protections?

• Is this a use case that touches on fundamental concerns about human dignity•
or social expectations, which could add additional limitations to the scope of
appropriate use of algorithmic approaches?

• Is the decision or classification to be made by ML an important decision, where•
fairness should be particularly guarded, and if so, are there indicators that this
can be accomplished? What constitutes important will vary, but sometimes these
are understood to be decisions with legal effect or legal-like effects (such as hiring
or education). Another way of defining important would be to first identify those
models in your own organization as areas where a mistaken decision would have
the most significant impact for a decision subject.

Data Collection and Cleaning
At this point in the pipeline, you have decided on a use case and are looking for data
and preparing data for modeling. Now, the following concerns should be addressed:
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25 It’s worth noting that defining consent can be complicated. After all, no one appreciates all the pop-up consent
notices that have proliferated after GDPR. Consent here should be interpreted in a broad rather than narrow
sense of the word.

• Will data be acquired in a way that respects informed consent?25 Have you dis‐•
closed the purposes for which you will use the data to the subjects in a reasonably
informative and transparent way?

• Have you stored data in a manner that promotes privacy and minimizes the•
likelihood of unintentional disclosures?

• Have you done exploratory analyses of the data to look for potential bias in that•
data?

Model Creation and Training
Now you are in receipt of data, and it’s time to do some modeling:

• Have you come up with an affirmative plan to monitor and address bias? How•
will you choose from various forms of fairness interventions based on the
potential harms of bias and based on the particular normative values or legal
restrictions of your use case?

• Are you training in a manner that will reduce data leaks from the trained model•
and enhance robustness against malicious attacks?

• Have you considered in your loss function the relative degree of harm from•
different mistakes, rather than lazily setting all mistakes to the same loss value?

• Have you chosen your model architecture (say, opaque neural network versus•
interpretable linear function) by understanding the relative importance of accu‐
racy and explainability for your particular application?

• If your domain has something like scientific laws with strong predictive value,•
have you included this domain knowledge in your model architecture and train‐
ing choices?

Model Validation and Quality Assessment
At this stage of the pipeline, you may receive a model that you are told is as good as it
is going to be in terms of accuracy. Your job is to kick the tires in a reasoned way and
decide whether to give this model approval to go forward, or send it back to training:

• Have you asked whether the model was trained on a proxy, and if so, what data is•
available to justify the use of that proxy?
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26 It’s good to specify these in advance so you can’t “cheat” or otherwise rationalize poor performance after the
fact. This doesn’t have to involve rigid adherence to those criteria, but it will keep you honest about what
constitutes a good job even if you do reassess those criteria over time.

• Have you tested the model robustly, with a fair selection of held-out data in•
realistically challenging situations? Basic accuracy remains an ethical obligation
as well as a business target and technical measure.

• Are you able to identify and understand the logic driving the model globally and•
to generate individual explanations in case an individual might ask for them?
(See Chapter 9 for more information.)

Model Deployment
Now it’s time to make the model available for its planned use:

• Have you put in place monitoring programs to continually assess the perfor‐•
mance of the system in actual use? Such performance could be assessed with
respect to traditional performance metrics (such as accuracy) as well as with
respect to fairness metrics (as discussed earlier).

• Have you established ex ante criteria to assess whether the model is working as•
expected?26

• Have you tried running the model in an online mode so that you can watch how•
it performs, counterfactually, in advance of an actual product launch? Or in the
alternative, you can maintain a shadow model, which makes predictions on pro‐
ductive data even when users cannot see the results. This can be an intermediate
step to understanding likely deployment performance without running the risks
associated with actual deployment.

Products for the Market
Whether models are intended for internal or external use, they need to meet the
same standards for fairness and privacy protections. But models that will be directly
accessed by external users generally have an additional set of requirements that must
be met.

If the end goal for your model is to be directly accessed by human users, consider the
following:

• Will you make available a recourse or method to challenge a decision, and if so•
how?

• Will you make available explanations about how the ML system works, possibly•
even specific guidance for individuals about how their outcomes were formed?27
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27 Model Cards, as previously mentioned, are one system to accomplish just this.
28 As a shameless self-promotion, consider Aileen Nielsen’s book-length introduction to hands-on ML ethics:

Practical Fairness, another O’Reilly title.

• How will you detect events or problems you haven’t anticipated? How will you•
learn about what you currently do not know that you do not know?

Conclusion
We have reviewed many fairness, privacy, and other ethical considerations that affect
the design, training, and deployment of real-world ML systems. These topics are all
highly complex. This chapter should give you and your organization a sampling of
key issues you should factor into designing and deploying ML systems. To progress
further, many excellent learning materials and academic research papers are out there
on all these topics for you to look for more information.28

In the meantime, this complexity shouldn’t discourage you! We recommend the
following steps:

• Create basic institutional rules and safeguards in your workplace.•
• Human-readable changes can be easier to understand and more transparent than•

computational techniques.
• Institutional changes encourage people to bring up ethical concerns at meetings.•

It’s better for fairness not to be off in a dark corner somewhere. Try raising your
hand and mentioning a fairness concern you have. Start with a small one (data
access, a recourse interface, statistical parity), and you can work your way up to
more sophisticated targets over time. Over time, organizations can move even
further—for example, by creating a red team that intentionally and proactively
tries to manipulate products or identify harmful outcomes.

• Ethical guidelines can also serve as a high-level but practical checklist for initiat‐•
ing new projects or approving the launch of completed products.

• Address fairness, privacy, and ethics concerns routinely at product inception.•
• Most fairness, privacy, and other ethical problems in ML originate at the level of•

product conception and creation. Start asking relevant questions when contem‐
plating whether a project is even a good idea at the outset.

• Are you using fair data that you obtained in a legal and ethical way? Guidance•
from Gebru et al. (2021) can provide a great framework for documenting your
data and its appropriate use.

• Are appropriate working conditions in place to maintain the security and privacy•
of data?
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• If you succeed at the goal you propose, will that be a good (or at least neutral)•
thing for the world at large?

• Create a virtuous cycle of Responsible AI practices.•
• The more you learn and the longer you keep Responsible AI concerns in mind,•

the more your ML pipeline and ML offerings will reflect good fairness practices.
• If you can make a commitment to learning a little about Responsible AI each•

week—and implementing it slowly in your own work—at the end of a year you’ll
note a remarkable degree of progress.

We wish you good luck as you begin practical steps to make the world a better place,
starting with your ML products (including, sometimes, not using them).

136 | Chapter 6: Fairness, Privacy, and Ethical ML Systems



CHAPTER 7

Training Systems

ML training is the process by which we transform input data into models. We take
a set of input data, almost always preprocessed and stored in an efficient way, and
process it through a set of ML algorithms. The output is a representation of that data,
called a model, that we can integrate into other applications. For more details on what
a model is, see Chapter 3.

A training algorithm describes the specific steps by which software reads data and
updates a model to try to represent that data. A training system, on the other hand,
describes the entire set of software surrounding that algorithm. The simplest imple‐
mentation of an ML training system is on a single computer running in a single
process that reads data, performs some cleaning and imposes some consistency on
that data, applies an ML algorithm to it, and creates a representation of the data in
a model with new values as a result of what it learns from the data. Training on
a single computer is by far the simplest way to build a model, and the large cloud
providers do rent powerful configurations of individual machines. Note, though, that
many interesting uses of ML in production process a significant amount of data and
as a result might benefit from significantly more than one computer. Distributing
processing brings scale but also complexity.

In part, because of our broad conception of what an ML training system is, ML train‐
ing systems may have less in common with one another across different organizations
and model builders than any other part of the end-to-end ML system. In Chapter 8,
you will see that even across different use cases, many of the basic requirements of
a serving system are broadly similar: they take a representation of the model, load
it into RAM, and answer queries about the contents of that model sent from an
application. In serving systems, sometimes that serving is for very small models (on
phones, for example). Sometimes it is for huge models that don’t even all fit on a
single computer. But the structure of the problem is similar.
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1 In many modern frameworks (notably, TensorFlow, PyTorch, and JAX), the configuration language used is
most commonly actual code, usually Python. This is a significant source of headaches for newcomers to the
ML training system world, but does offer advantages of flexibility and familiarity (for some).

In contrast, training systems do not even necessarily live in the same part of our
ML lifecycle (see Figure 1-1). Some training systems are closest to the input data,
performing their function almost completely offline from the serving system. Other
training systems are embedded in the serving platform and are tightly integrated
with the serving function. Additional differences appear when we look at the way
that training systems maintain and represent the state of the model. Because of this
significant variety of differences across legitimate and well-structured ML training
systems, it is not reasonable to cover all of the ways that organizations train models.

Instead, this chapter covers a somewhat idealized version of a simple, distributed ML
training system. We’ll describe a system that lives in a distinct part of the ML loop,
next to the data and producing artifacts bound for the model quality evaluation sys‐
tem and serving system. Although most ML training systems that you will encounter
in the real world will have significant differences from this architecture, separating
it out will allow us to focus on the particularities of training itself. We will describe
the required elements for a functional and maintainable training system and will also
describe how to evaluate the costs and benefits of additional desirable characteristics.

Requirements
A training system requires the following elements, although they might appear in a
different order or combined with one another:

Data to train on
This includes human labels and annotations if we have them. This data should be
preprocessed and standardized by the time we use it. It will usually be stored in
a format that is optimized for efficient access during training. Note that “efficient
access during training” might mean different things depending on our model.
The data should also be stored in an access-protected and policy-enforcing
environment.

Model configuration system
Many training systems have a means of representing the configuration of an
individual model separate from the configuration of the training system as a
whole.1 These should store model configurations in a versioned system with
some metadata about the teams creating the models and the data used by the
models. This will come in extremely handy later.
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Model-training framework
Most model creators will not be writing model-training frameworks by hand.
It seems likely that most ML engineers and modelers will eventually be exclu‐
sively using a training systems framework and customizing it as necessary. These
frameworks generally come with the following:

Orchestration
Different parts of the system need to run at different times and need to be
informed about one another. We call this orchestration. Some of the systems
that do this include the following two elements as well, but these functions
can be assembled separately, so they are broken out here.

Job/work scheduling
Sometimes part of orchestration, job scheduling refers to actually starting the
binaries on the computers and keeping track of them.

Training or model development software
This software handles the ordinary boilerplate tasks usually associated with
building an ML model. Common examples right now include TensorFlow,
PyTorch, and many others. Disagreements rivaling religious wars start over
which of these is best, but all of them accomplish the same job of helping
model developers build models more quickly and more consistently.

Model quality evaluation system
Some engineers don’t think of this as part of the training system, but it has to be.
The process of model building is iterative and exploratory. Model builders try out
ideas and discard most of them. The model quality evaluation system provides
rapid and consistent feedback on the performance of models and allows model
builders to make decisions quickly.

This is the most commonly skipped portion of a training system
but really is mandatory.

If we do not have a model quality evaluation system, each of our model develop‐
ers will build a more ad hoc and less reliable one for themselves and will do so at
a higher cost to the organization. This topic is covered much more extensively in
Chapter 5.

Syncing models to serving
The last thing we do with a model is send it to the next stage, usually the serving
system but possibly another kind of analysis system.
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2 Several types of ML systems (notably, reinforcement learning systems) are quite different from this architec‐
ture. They often have additional components, like an agent and simulation, and also put prediction in what
we call “training” here. We’re not ignorant of these differences, but chose the most common components
to simplify this discussion. Your system may have these components in a different order or might have
additional ones.

If we have a system that provides for these basic requirements, we will be able to offer
a minimally productive technical environment to model developers. In addition to
these basic elements, though, we will want to add infrastructure specifically geared
toward reliability and manageability. Among these elements, we should include some
careful thoughts about monitoring this multistage pipeline, metadata about team
ownership of features and models, and a full-fledged feature storage system.

Basic Training System Implementation
Figure 7-1 depicts a proposed architecture for a simple but relatively complete and
manageable ML training system.2

Figure 7-1. Basic ML training system architecture

In this simplified training system, the data flows in from the left, and models emerge
on the right. In between we clean up, transform, and read the data. We use an
ML framework that applies a training algorithm to turn the data into a model. We
evaluate the model that we just produced. Is it well formed? Is it useful? Finally, we
copy a servable version of that model into our serving system so we can integrate
it into our application. All the while, we keep track of our models and data in a
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metadata system, we make sure the pipeline continues to work, and we monitor the
whole thing. Next, we’ll go into detail about the roles of each of these components.

Features
Training data is data about events or facts in the world that we think will be relevant
to our model. A feature is a specific, measurable aspect of that data. Specifically,
features are those aspects of the data that we believe are most likely to be useful
in modeling, categorizing, and predicting future events given similar circumstances.
To be useful, features need a consistent definition, consistent normalization, and con‐
sistent semantics across the whole ML system, including the feature store, training,
quality evaluation, and serving. For significantly more detail, see Chapter 4.

If we think of a feature for YarnIt purchase data like “purchase price,” we can easily
understand how this can go badly if we’re not careful. First of all, we probably need
to standardize purchases in currency, or at least not mix currencies in our model. So
let’s say we convert everything to US dollars. We need to guarantee that we do that
conversion based on the exchange rate at a particular point in time—say, the closing
rate at the end of the trading day in London for the day that we are viewing data.
We then have to store the conversion values used in case we ever need to reconvert
the raw data. We probably should normalize the data, or put it into larger buckets
or categories. We might have everything under $1 in the 0th bucket, and $1–$5 in
the next bucket, and so on in $5 increments. This makes certain kinds of training
more efficient. It also means that we need to ensure we have standard normalization
between training and serving and that if we ever change normalization, we update it
everywhere carefully in sync.

Features and feature development are a critical part of how we experiment when we
are making a model. We are trying to figure out which aspects of the data matter to
our task and which are not relevant. In other words, we want to know which features
make our model better. As we develop the model, we need easy ways to add new
features, produce new features on old data when we get a new idea for what to look
for in existing logs, and remove features that turned out to not be important. Features
can be complicated.

Feature Store
We need to store the features and, not surprisingly, the most common name for the
system where we do that is the feature store. The characteristics of a feature store
will exist, even if our model training system reads raw data and extracts features
each time. Most people will find it convenient, and an especially important reliability
bonus, to store extracted features in a dedicated system of some kind. This topic is
covered extensively in Chapter 4.
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3 Worse, still, when provenance cannot be tracked, we will have governance problems (compliance, ethics,
legal). For example, if we cannot prove that the data that we trained on is owned by us or licensed for this
use, we are open to claims that we misused it. If we cannot demonstrate the chain of connection that created a
dataset, we cannot show compliance with privacy rules and laws.

One common data architecture for this is a bunch of files in a directory (or a bunch
of buckets in an object storage system). This is obviously not the most sophisticated
data storage environment but has a huge advantage, giving us a fast way to start
training, and it appears to facilitate experimentation with new features. Longer term,
though, this unstructured approach has two huge disadvantages.

First, it is extremely difficult to ensure that the system as a whole is consistently
functioning correctly. Systems like this with unstructured feature-engineering envi‐
ronments frequently suffer from training-serving feature skew (whereby features are
defined differently in the training and serving environments) as well as problems
related to inconsistent feature semantics over time, even in the training system alone.

The second problem is that unstructured feature-engineering environments can
actually hinder collaboration and innovation. They make it more difficult to under‐
stand the provenance of features in a model and more difficult to understand who
added them, when, and why.3 In a collaborative environment, most new model engi‐
neers will benefit enormously from understanding the work of their predecessors.
This is made easier by being able to trace backward from a model that works well,
to the model definition, and ultimately to the features that are used. A feature store
gives a consistent place to understand the definition and authorship of features and
can significantly improve innovation in model development.

Model Management System
A model management system can provide at least three sets of functionality:

Metadata about models
Configuration, hyperparameters, and developer authorship

Snapshots of trained models
Useful for bootstrapping new variants of the same model more efficiently by
using transfer learning, and tremendously useful for disaster recovery when we
accidentally delete a model

Metadata about features
Authorship and usage of each feature by specific models

While these functions are theoretically separable, and are often separate in the soft‐
ware offerings, together they form the system that allows engineers to understand the
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models in production, how they are built, who built them, and what features they are
built upon.

Just as with feature stores, everyone has a rudimentary form of a model management
system, but if it amounts to “whatever configuration files and scripts are in the lead
model developer’s home directory,” it may be appropriate to check whether that level
of flexibility is still appropriate for the needs of the organization. There are reasonable
ways to get started with model management systems so that the burden is low. It does
not need to be complicated but can be a key source of information, tying serving all
the way back through training to storage. Without this data, it’s not always possible to
figure out what is going wrong in production.

Orchestration
Orchestration is the process by which we coordinate and keep track of all the other
parts of the training system. This typically includes scheduling and configuring the
various jobs associated with training the model as well and tracking when training is
complete. Orchestration is often provided by a system that is tightly coupled with our
ML framework and job/process scheduling system, but does not have to be.

For orchestration here, think of Apache Airflow as an example. Many systems are
technically workflow orchestration systems but are focused on building data analytics
pipelines (such as Apache Beam or Spark, or Google Cloud Dataflow). These typically
come with significant assumptions about the structure of your tasks, have additional
integrations, and have many restrictions built in. Note that Kubernetes is not a
pipeline orchestration system: Kubernetes has a means of orchestrating containers
and tasks that run in them, but generally does not by itself provide the kinds of
semantics that help us specify how data moves through a pipeline.

Job/process/resource scheduling system
Everyone who runs ML training pipelines in a distributed environment will have a
way of starting processes, keeping track of them, and noticing when they finish or
stop. Some people are fortunate enough to work at an organization that provides
centralized services, either locally or on a cloud provider, for scheduling jobs and
tasks. Otherwise, it is best to use one of the popular compute resource management
systems, either open source or commercial.

Examples of resource scheduling and management systems include software such as
the previously mentioned Kubernetes, although it also includes many other features
such as setting up networking among containers and handling requests to and from
containers. More generally and more traditionally, Docker could be regarded as a
resource scheduling system by providing a means of configuring and distributing
virtual machine (VM) images to VMs.
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ML framework
The ML framework is where the algorithmic action is. The point of ML training is to
transform the input data into a representation of that data, called a model. The ML
framework we use will provide an API to build the model that we need and will take
care of all of the boilerplate code to read the features and convert them into the data
structures appropriate for the model. ML frameworks are typically fairly low level
and, although they are much discussed and debated, are ultimately quite a small part
of the overall ML loop in an organization.

Quality Evaluation
The ML model development process can be thought of as continuous partial failure
followed by modest success. It is essentially unheard of for the first model that
anyone tries to be the best, or even a reasonably adequate, solution to a particular
ML problem. It necessarily follows, therefore, that one of the essential elements of a
model-training environment is a systematic way to evaluate the model that we just
trained.

At some level, model quality evaluation has to be extremely specific to the purposes
of a particular model. Vision models correctly categorize pictures. Language models
interpret and predict text. At the most basic level, a model quality evaluation system
offers a means of performing a quality evaluation, usually authored by the model
developer, and storing the results in a way that they can be compared to previous
versions of the same model. The operational role of such a system is ultimately to
be sufficiently reliable that it can be an automatic gate to prevent “bad” models from
being sent to our production serving environment.

Evaluation starts with factors as simple as verifying that we are loading the right
version of the right model and ensuring that the model loads in our model server.
Evaluation also must include performance aspects to make sure that the model can
be served in the memory and computational resources that we have available. But
also, we have to care about how the model performs on requests that we believe to be
representative of the requests we will get. For significantly more detail on this topic,
see Chapter 5.

Monitoring
Monitoring distributed data processing pipelines is difficult. The kinds of straight‐
forward things that a production engineer might care about, such as whether the
pipeline is making sufficiently fast progress working through the data, are quite
difficult to produce accurately and meaningfully in a distributed system. Looking at
the oldest unprocessed data might not be meaningful because there could be a single
old bit of data that’s stuck in a system that is otherwise done processing everything.
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4 For example, see “How ML Breaks: A Decade of Breaks for One Large ML Pipeline” by Daniel Papasian and
Todd Underwood.

Likewise, looking at the data processing rate might not be useful by itself if some
kinds of data are markedly more expensive to process than others.

This book has an entire monitoring chapter (Chapter 9). Harder questions will
be tackled there. For this section, the single most important metric to track and
alert on is training system throughput. If we have a meaningful long-term trend of
how quickly our training system is able to process training data under a variety of
conditions, we should be able to set thresholds to alert us when things are not going
well.

General Reliability Principles
Given this simple, but workable, overall architecture, let’s look at how this training
system should work. If we keep several general principles in mind during the con‐
struction and operationalization of the system, things will generally go much better.

Most Failures Will Not Be ML Failures
ML training systems are complex data processing pipelines that happen to be tremen‐
dously sensitive to the data that they are processing. They are also most commonly
distributed across many computers, although in the simplest case they might be on
a single computer. This is not a base state likely to lead to long-term reliability, and
production engineers generally look at this data sensitivity for the most common fail‐
ures. However, when experienced practitioners look at the experienced failures in ML
systems over time, they find that most of the failures are not ML specific.4 They are
software and systems failures that occur commonly in this kind of distributed system.
These failures often have impact and detection challenges that are ML specific, but
the underlying causes are most commonly not ML specific.

Amusing examples of these failures include such straightforward things as “the train‐
ing system lost permission to read the data so the model trained on nothing,” and “the
version that we copied to serving wasn’t the version we thought it was.” Most of them
are of the form of incorrectly monitored and managed data pipelines. For many more
examples, see Chapters 11 and 15.

To make ML training systems reliable, look to systems and software errors and
mitigate those first. Look at software versioning and deployment, permissions and
data access requirements, data updating policies and data organization, replication
systems, and verification. Essentially, do all of the work to make a general distributed
system reliable before beginning any ML-specific work.
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5 This recommendation has one interesting exception, but one that will not apply to the vast majority of practi‐
tioners: huge language models. Multiple very large language models are being trained by large ML-centric
organizations in order to provide answers to complex queries across a variety of languages and data types.
These models are so expensive to train that the production model for them is explicitly to train them once
and use them (either directly or via transfer learning) “forever.” Of course, if the cost of training these models
is significantly reduced or other algorithmic advances arise, these organizations may find themselves training
new versions of these models anyway.

Models Will Be Retrained
Perhaps this section should be titled something even stronger: models must be
retrained. Some model developers will train a model from a dataset once, check the
results, deploy the model into production, and claim to be done. They will note that if
the dataset isn’t changing and the purpose of the model is achieved, the model is good
enough and there is no good reason to ever train it again.

Do not believe this. Eventually, whether in a day or a year, that model developer
or their successor will get a new idea and want to train a different version of the
same model. Perhaps a better dataset covering similar cases will be identified or
created, and then the model developers will want to train on that one. Perhaps just
for disaster-recovery reasons you’d like to prove that if you delete every copy of the
model by mistake, you can re-create it. You might simply want to verify that the
toolchain for training and validation is intact.

For all of these reasons, assume every model will be retrained and plan accordingly—
store configs and version them, store snapshots, and keep versioned data and meta‐
data. This approach has tremendous value: most of the debates about so-called
“offline” and “online” models are actually debates about retraining models in the
presence of new data. By creating a hard production requirement that models can
be retrained, the technical environment is much of the way to facilitating periodic
retraining of all models (including rapid retraining).5

Assume every model will be retrained.

Models Will Have Multiple Versions (at the Same Time!)
Models are almost always developed in cohorts, most obviously because we will want
to train different versions with different hyperparameters. One common approach is
to have a named model with multiple minor changes to it. Sometimes those changes
arrive in a rapid cluster at the beginning, and other times they arrive over time. But
just as models will be retrained, it is true that they will be changed and developed
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over time. In many environments, we will want to serve two or more versions of
the same model at the same time in order to determine how the different versions
of the model work for different conditions (for those familiar with traditional web
development for user experience, this is essentially A/B testing for models).

Hosting simultaneous versions of the same model requires specific infrastructure. We
need to use our model management infrastructure to keep track of model metadata
(including things like the model family, model name, model version, and model
creation date). We also need to have a system to route a subset of lookups to one
version of the model versus another version.

Good Models Will Become Bad
We should assume that the models we produce will be hard to reproduce and will
have subtle and large reliability problems in the future. Even when a model works
well when we launch it, we have to assume that either the model or the world might
change in some difficult-to-predict way that causes us enormous trouble in future
years. Make backup plans.

The very first backup plan is to make a non-ML (or at least “simpler-ML”) fallback
path or “fail-safe” implementation for our model. This is going to be a heuristic or
algorithm or default that ensures that at least some basic functionality is provided by
our application when the ML model is unable to provide sophisticated predictions,
categorizations, and insights. Common algorithms that accomplish this goal are sim‐
plistic and extremely general but at least slightly better than nothing. One example
we’ve mentioned earlier is that for recommendations on the yarnit.ai storefront, we
might simply default to showing popular items when we don’t have a customized
recommendation model available.

This approach has a tremendous problem, however: it limits how good you can let
your ML models be. If the models become so much better than the heuristics or
defaults, you will come to depend upon them so thoroughly that no backup will be
sufficient to accomplish the same goals. Depending on defaults and heuristics is a
completely appropriate path for most organizations that are early in the ML adoption
lifecycle. But it is a dependency that you should wean yourself off of if you’d like to
actually take advantage of ML in your organization.

The other backup plan is to keep multiple versions of the same model and plan to
revert to an older one if you need to. This will cover cases where a newer version of
the model is significantly worse for some reason, but it will not help when the world
as a whole has changed and therefore all versions of this model are not very good.

Ultimately, the second backup plan, combined with the ability to serve multiple
models at the same time and quickly develop new variations of existing models,
provides a path to understanding and resolving future model quality problems when
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6 Statisticians refer to these various properties of the data as missing completely at random (the propensity
for the data point to be missing is completely random); missing at random, or MAR (the propensity of the
data to be missing is not related to the data but is related to another variable—a truly unfortunate name
for a statistical term); and not missing at random (the likelihood of the data to be missing is correlated with
something in the data). In this case, we’re describing MAR data because the propensity for any given data
point to be missing is correlated with another variable (in this case, geography or time of day, for example).

the world has changed in a way that makes the model perform poorly. It is impor‐
tant for production traditionalists to note that no fixed or defensible barrier exists
between model development and production in this case. Model quality is both a
production engineering problem and a model development problem (which might
occur urgently in production).

Data Will Be Unavailable
Some of the data used to train new models will not be available when we try to
read it. Data storage systems, especially distributed data storage systems, have failure
modes that include small amounts of actual data loss, but much higher amounts
of data unavailability. This is a problem worth thinking through in advance of its
occurrence because it will definitely occur.

Most ML training datasets are already sampled from another, larger dataset, or simply
a subset of all possible data by virtue of when or how we started collecting the data
in the first place. For example, if we train on a dataset of customer purchase behavior
at yarnit.ai, this dataset is already incomplete from the start, in at least two obvious
ways.

First, there was some date before which we were not collecting this data (or some date
before which we choose not to use the data for whatever reason). Second, this is really
only customer purchase behavior on our site and does not include any customer
purchase behavior of similar products on any other sites. This is unsurprising because
our competitors don’t share data with us, but it does mean that we’re already seeing
only a subset of what is almost certainly relevant training data. For very high-volume
systems (web-browsing logs, for example), many organizations subsample this data
before training automatically as well, simply to reduce the cost of data processing and
model training.

Given that our training data is already subsampled, probably in several ways, when
we lose data, we should answer this question: is the loss of data biased in some way?
If we were to drop one out of every 1,000 training records in a completely random
way, this is almost certainly safe to ignore for the model. On the other hand, losing all
of the data from people in Spain, or from people who shop in the mornings, or from
the day before a large knitting conference—these are not ignorable. They are likely to
create new biases in the data that we train on versus the data that we do not.6
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Some training systems will try to pre-solve the problem of missing data for the entire
system in advance of it occurring. This will work only if all of your models have
a similar set of constraints and goals. This is because the impact of missing data is
something that matters to each model and can be understood only in the context of
its impact on each model.

Missing data can also have security properties that are worth considering. Some
systems, especially those designed to prevent fraud and abuse, will be under constant
observation and attack from outside malicious parties. Attacks on these systems
consist of trying different kinds of behaviors to determine the response of the system
and taking advantage of gaps or weaknesses that appear. In these cases, training
system reliability teams need to be certain that there is no way for an outside party
to systematically bias which particular time periods are skipped during training. It
is not at all unheard of for attackers to find ways to, for example, create very large
volumes of duplicate transactions for short periods of time in order to overwhelm
data processing systems and try to hit a high-rate discard heuristic in the system. This
is the kind of scenario that everyone working on data loss scenarios needs to consider
in advance.

Models Should Be Improvable
Models will change over time, not just by adding new data. They will also see
larger, structural changes. The requirements to change come from several directions.
Sometimes we will add a feature to the application or implementation that provides
new data but also requires new features of the model. Sometimes our user behavior
will change substantially enough that we need to alter the model to accommodate.
Procedurally, the most challenging change to model training in the training system
we’re describing here is adding a completely new feature.

Features Will Be Added and Changed
Most production ML training systems will have some form of a feature store to orga‐
nize the ML training data. (Feature stores offer many advantages and are discussed in
more detail in Chapter 4.) From the perspective of a training system, what we need
to note is that a significant part of model development over time is often adding new
features to the model. This happens when a model developer has a new idea about
some data that might, in combination with our existing data, usefully improve the
model.

Adding features will require a change to the feature store schema that is implementa‐
tion specific, but it might also benefit from a process to “backfill” the feature store
by reprocessing raw logs or data from the past to add the new feature for prior
examples. For instance, if we decide that the local weather in the city that we believe
our customers to be shopping from is a salient way to predict what they might buy,
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7 Adding these features might have significant privacy implications. These are discussed briefly in Chapter 4
and much more extensively in Chapter 6.

8 This is most common in model architectures that use gradient descent with significant amounts of parallelism
in learning. But this is an extremely common setup for large ML training systems. One example of a model
architecture that does not suffer from this problem is random forests.

9 An architecture in which the parameters of the model are stored is described well in “Scaling Distributed
Learning with the Parameter Server” by Mu Li et al. and in Chapter 12 of Dive Into Deep Learning by Joanne
Quinn et al. (Corwin, 2019). Variants of this architecture have become the most common way that large-scale
ML training stacks distribute their learning.

we’ll have to add customer_temperature and customer_precipitation columns to
the feature store.7 We might also reprocess browsing and purchasing data for the last
year to add these two columns in the past so that we can validate our assumption that
this is an important signal. Adding new columns to the feature store and changing to
schema and content of data in the past are both activities that can significantly impact
reliability of all our models in the training system if the changes are not managed and
coordinated carefully.

Models Can Train Too Fast
ML production engineers are sometimes surprised to learn that in some learning
systems, models can train too fast.8 This can depend a bit on the exact ML algorithm,
model structure, and parallelism of the system in which it’s being implemented. But it
is entirely possible to have a model that, when trained too quickly, produces garbage
results, but when trained more slowly, produces much more accurate results.

Here is one way this can happen: there is a distributed representation of the state
of the model used by a distributed set of learning processes. The learning processes
read new data, consult the state of the model, and then update the state of part of
the model to reflect the piece of data they just read.9 As long as there are either locks
(slow!) or no updates to the particular key we are updating (unlikely at scale) in the
middle of that process, everything is fine.

The problem is that multiple race conditions can exist, where two or more learner
tasks consult the model, read some data, and queue and update to the model at the
same time. One really common occurrence then is that the updates can stack on top
of each other, and that portion of the model can move too far in a certain direction.
The next time a bunch of learner tasks consult the model, they find it skewed in
one direction by a lot, compared to the data that they are reading, so they queue up
changes to move it substantially in the other direction. Over time, this part of the
model (and other parts of the model) can diverge from the correct value rather than
converge.
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For distributed training setups, multiple race conditions is an
extremely common source of failure.

Unfortunately for the discipline of ML production engineering, there is no simple
way to determine when a model is being trained “too fast.” There’s a real-world test
that is inconvenient and frustrating: if you train the same model faster and slower
(typically, with more and fewer learner tasks), and the slower model is “better” in
some set of quality metrics, then you might be training too fast.

The main approaches to mitigating this problem are to structurally limit the number
of updates “in flight” by making the state of the model as seen by any learning
processes closely synchronized with the state of the model as stored. This can be done
by storing the current state of the model in very fast storage (RAM) and by limiting
the rate at which multiple processes update the model. It is possible, of course, to use
locking data structures for each key or each part of the model, but the performance
penalties imposed by these are usually too high to seriously consider.

Resource Utilization Matters
This should be stated simply and clearly: ML training and serving is computationally
expensive. One basic reason that we care about resource efficiency for ML training is
that without an efficient implementation, ML may not make business sense. Consider
that an ML model offers some business or organizational value proportional to the
value that it provides, divided by the cost to create the model. While the biggest
costs at the beginning are people and opportunity costs, as we collect more data,
train more models, and use them more, computer infrastructure costs will grow to an
increasingly large share of our expenditure. So it makes sense to pay attention to it
early.

Specifically and concretely, utilization describes the following:

portion of compute resources used
total compute resources paid for

This is the converse of wastefulness and measures how well we’re using the resources
we pay for. In an increasingly cloud world, this is an important metric to track early.

Resource utilization is also a reliability issue. The more headroom we have to retrain
models compared to the resources we have available, the more resilient the overall
system will be. This is because we will be able to recover from outages more quickly.
This is true if we’re training the model on a single computer or on a huge cluster.
Furthermore, utilization is also an innovation issue. The cheaper models are to train,
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10 Transfer learning most generally involves taking learning from one task and applying it to a different, but
related task. Most commonly in production ML environments, transfer learning involves starting learning
with the snapshot of an already trained, earlier version of our model. We will either train only on new
features, not included in the snapshot, or train only on new data that has appeared since the training of the
snapshot. This can speed up learning significantly and thereby reduces costs significantly as well.

the more ideas we will be able to explore in a given amount of time and budget. This
markedly increases the likelihood that we will find a good idea among all of the bad
ones. It is easy to lose track of this down here in the details, but we are not really here
to train models—we’re here to make some kind of difference in our organization and
for our customers.

So it’s clear we care about efficient use of our resources. Here are some simple ways
we can make ML training systems work well in this respect:

Process data in batches
When possible (algorithm-dependent), train on chunks of data at the same time.

Rebuild existing models
Early-stage ML training systems often rebuild models from scratch on all of the
data when new data arrives. This is simpler from a configuration and software
perspective but ultimately can become enormously inefficient. This idea of incre‐
mentally updating models has a few other variants:

• Use transfer learning to build a model by starting with an existing model.10•
• Use a multimodel architecture with a long-term model that is large but•

seldom retrained, and a smaller, short-term model that is cheaply updated
frequently.

• Use online learning, whereby the model is incrementally updated as each•
new data point arrives.

Simple steps such as these can significantly impact an organization’s computational
costs for training and retraining models.

Utilization != Efficiency
To know whether our ML efforts are useful, we have to measure the value of the pro‐
cess rather than the CPU cycles spent to deliver it. Efficiency measures the following:

value produced
cost
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Cost can be calculated two ways, each of which provides a different view of our
efforts. Money-indexed cost is the dollars we spend on resources. Here we just calcu‐
late the total amount of money spent on training models. This has the advantage of
being a very real figure for most organizations. It has the disadvantage that changes
in pricing of resources can make it hard to see changes that are due to modeling and
system work versus exogenous changes from our resource providers. For example, if
our cloud provider starts charging much more for a GPU that we currently use, our
efficiency will go down through no change we made. This is important to know, of
course, but it doesn’t help us build a more efficient training system. In other words,
money cost is the most important, long-term measure of efficiency but is ironically
not always the best way to identify projects to improve efficiency.

Conversely, resource-indexed cost is measured in dollar-constant terms. One way to do
this is to identify the most expensive and most constrained resource and use that as
the sole element of the resource-indexed cost. For example, we might measure cost as
CPU seconds or GPU seconds. This has the advantage that when we make our training
system more efficient, we will be able to see it immediately, regardless of current
pricing details.

This raises the difficult question of what, exactly, is the value of our ML efforts.
Again, there are two kinds of value we might measure: per model and overall. At
the per model level of granularity, value is less grandiose than we might expect.
We don’t need to measure the actual business impact of every single trained model.
Instead, for simplicity, let’s assume that our training system is worthwhile. In that
case, we need a metric that helps us compare the value being created across different
implementations training the same model. One that works well is something like

number of features trained

or even

number of examples processed

or possibly

number of experimental models trained

So for a per model, resource-indexed, cost-efficiency metric, we might have this:

millions of examples
GPU second
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This will help us easily see efforts to make reading and training more efficient
without requiring us to know anything at all about what the model actually does.

Conversely, overall value attempts to measure value across the entire program of ML
model training, considering how much it costs us to add value to the organization as
a whole. This will include the cost of the staff, the test models, and the production
model training and serving. It should also attempt to measure the overall value of
the model to our organization. Are our customers happier? Are we making more
money? Overall efficiency of the ML training system is measured at a whole-program
or whole-group basis and is measured over months rather than seconds.

Organizations that do not have a notion of efficiency will ultimately misallocate
time and effort. It is far better to have a somewhat inaccurate measure that can be
improved than to not measure efficiency at all.

Outages Include Recovery
This is somewhat obvious but still worth stating clearly: ML outages include the time
it takes to recover from the outage. This has a huge and direct implication for mon‐
itoring, service levels, and incident response. For example, if a system can tolerate
a 24-hour outage of your training system, but it takes you 18 hours to detect any
problems and 12 hours to train a new model after the problems are detected, we can‐
not reliably stay within the 24 hours. Many people modeling production-engineering
response to training-system outages utterly neglect to include model recovery time.

Common Training Reliability Problems
Now that you understand the basic architecture of a training system and have looked
at general reliability principles about training systems, let’s look at some specific
scenarios where training systems fail. This section covers three of the most common
reliability problems for ML training systems: data sensitivity, reproducibility, and
capacity shortfalls. For each, we will describe the failure and then give a concrete
example of how that might occur in the context of YarnIt, our fictional online knitting
and crochet supply store.

Data Sensitivity
As has been repeatedly mentioned, ML training systems can be extremely sensitive
to small changes in the input data and to changes in the distribution of that data.
Specifically, we can have the same volume of training data but have significant gaps
in the way that the data covers various subsets of the data. Think about a model that
is trying to predict things about worldwide purchases but has data from only US and
Canadian transactions. Or consider an image-categorization algorithm that has no
pictures of cats but many pictures of dogs. In each of these scenarios, the model will
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have a biased view of reality by virtue of training on only a biased set of data. These
gaps in training data coverage can be present from the very beginning or can occur
over time as we experience gaps or shifts in the training data.

Lack of representativeness in the input data is one common source of bias in
ML models; here, we are using bias in both the technical sense of the difference
between the predicted value and the correct value in a model, but also in the social
sense of being prejudiced against or damaging for a population in society. Strange
distributions in the data can also cause a wide variety of other much more mundane
problems. For some subtle and interesting cases, see Chapter 11, but for now let’s
consider a straightforward data sensitivity problem at YarnIt.

Example Data Problem at YarnIt
YarnIt uses an ML model to rank the results of end-user searches. Customers come
to the website and type some words for a product they are looking for. We generate
a simple and broad list of candidate products that might match that search and then
rank them with an ML model designed to predict how likely each product is to be
useful to the user who is doing this query right now.

The model will have features like “words in the product name,” “product type,”
“price,” “country of origin of the query,” and “price sensitivity of the user.” These will
help us rank a set of candidate products for this user. And we retrain this model every
day in order to ensure that we’re correctly ranking new products and adapting to
changes in purchase patterns.

In one case, our pricing team at YarnIt creates a series of promotions to sell off
overstocked products. The modeling team wants to capture the pre-discount price
and the sale price separately, as these might be different signals to user purchase
behavior. But because of the change in data formatting, they mistakenly exclude all
discounted purchases from the training set after they add the discounted price to the
dataset. Until they notice this, the model will train entirely on full-price purchases.
From the perspective of the ML system, discounted items are simply no longer ever
purchased by anyone, ever. As a result, the model will eventually stop recommending
the discounted products, since there is no longer any evidence from our logging, data,
and training system that anyone is ever purchasing them! This kind of very small
error in data handling during training can lead to significant errors in the model.

Reproducibility
ML training is often not strictly reproducible; it is almost impossible to use exactly
the same binaries on exactly the same training data and produce exactly the same
model, given the way most modern ML training frameworks work. Even more
disconcerting, it may not even be possible to get approximately the same model.
Note that while reproducibility in academic ML refers to reproducing the results in a
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11 The astute reader might note how terrifying this is. Another way to read this is “my models could change any
time I happen to update TensorFlow or PyTorch, even for a new minor version.” This is essentially true but
not common, and the differences often aren’t pronounced.

published paper, here we are referring to something more straightforward and more
concerning: reproducing our own results from this same model on this same dataset.

ML reproducibility challenges come from several sources, some of them fixable and
others not. It is important to address the solvable problems first. Here are some of the
most common causes of model irreproducibility:

Model configuration, including hyperparameters
Small changes in the precise configuration of the model, especially in the hyper‐
parameters chosen, can have big effects on the resulting model. The solution here
is clear: use versioning for the model configurations, including the hyperparame‐
ters, and ensure that you’re using exactly the same values.

Data differences
As obvious as it may sound, most ML training feature storage systems are
frequently updated, and it is difficult to guarantee that there are no changes at
all to data between two runs of the same model. If you’re having reproducibility
challenges, eliminating the possibility of differences in the training data is a
critical step.

Binary changes
Even minor version updates to your ML training framework, learning binaries,
or orchestration or scheduling system can result in changes to the resulting
models. Hold these constant across training runs while you’re debugging repro‐
ducibility problems.11

Aside from those fixable causes for irreproducibility, at least three causes are not
easily fixed:

Random initializations
Many ML algorithms and most ML systems use random initializations, random
shuffling, or random starting-point selection as a core part of the way they
work. This can contribute to differences across training runs. In some cases, this
difference can be mitigated by using the same random seed across runs.

System parallelism
In a distributed system (or even a single-computer training system with multiple
threads), jobs will be scheduled on lots of processors, and they will learn in a
somewhat different order each time. There will be ordering effects depending
on which keys are updated in what order. Without sacrificing the throughput
and speed advantages of distributed computing, there’s no obvious way to avoid
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12 As long as the speed at which processors (whether CPUs or GPUs/accelerators) and their local memory
operate is significantly higher than the speed at which we can access that state from across a network
connection, there will always be lag in propagating that state. When processors update a portion of the model
based on input data that they have learned from, there can always be other processors using an older version
of those keys in the model.

this. Note that some modern hardware accelerator architectures offer custom,
high-speed interconnections among chips much faster than other networking
technologies. NVIDIA’s NVLink or the interconnections among Google’s Cloud
TPUs are examples of this. These interconnections reduce, but do not eliminate,
the lag in propagating state among compute nodes.12

Data parallelism
Just as the learning jobs are distributed, so is the data, assuming we have a lot of
it. Most distributed data systems do not have strong ordering guarantees without
imposing significant performance constraints. We have to assume that we will
end up reading the training data in somewhat different order even if we do so
from a limited number of training jobs.

Addressing these three causes is costly and challenging to the point of being almost
impossible. Some level of inability to reproduce precisely the same model is a neces‐
sary feature of the ML training process.

Example Reproducibility Problem at YarnIt
At YarnIt, we retrain our search and recommendations models nightly to ensure that
we regularly adjust them for changes in products and customer behavior. Typically,
we take a snapshot of the previous day’s model and then train the new events since
then on top of that model. This is cheaper to do but ultimately does mean that each
model is really dozens or hundreds of incremental training runs on top of a model
trained quite some time ago.

Periodically, we have small changes to the training dataset over time. The most
common changes are charges that are due to fraud. Detecting that a transaction is
fraudulent may take up to several days, and by that point we may have already trained
a new model with that transaction included as an authorized purchase. The most
thorough way to fix that would be to recategorize the original transaction as fraud
and then retrain every model that had ever included that transaction from an older
snapshot. That would be extremely expensive to do every time we have a fraudulent
transaction. We could conceivably end up retraining the last couple of weeks’ models
constantly. The other approach is to attempt to reverse the fraud from the model.
This is complicated because there is no foolproof or exact way to revert a transaction
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13 A large and growing set of work exists on the topic of deleting data from ML models. Readers should
consult some of this research to understand more about the various approaches and consequences of deleting
previously learned data from a model. One paper summarizing some recent work on this topic is “Making AI
Forget You: Data Deletion in Machine Learning” by Antonio A. Ginart et al., but be aware that this is an active
area of work.

14 Chapter 6 covers some cases where we want to delete private data from an existing model trained on that data.
The short version is that if the data is truly private and is included in our model, unless we used differential
privacy during model construction and provide careful guarantees on how the model can be queried, we
probably have to retrain the model from scratch. Indeed, we have to do this every single time someone
requests that their data be removed. This, alone, is a powerful argument for ensuring that our models do not
include private data.

15 Details of why this is the case are really specific to the model and ML framework, and beyond the scope of this
book. But it often boils down to nondeterminism in the ML framework exacerbated by nondeterminism in
the parallel processing of data. Reproducing this nondeterminism in your own environment is tremendously
educational and more than a tiny bit terrifying. And yes, this footnote did just encourage readers to reproduce
irreproducibility.

in most ML models.13 We can approximate the change by treating the fraud detected
as a new negative event, but the resulting model won’t be quite the same.14

This is all for the models that are currently in production. At the same time, model
developers at YarnIt are constantly developing new models to try to improve their
ability to predict and rank. When they develop a new model, they train it from
scratch on all the data with the new model structure and then compare it to the
existing model to see if it is materially better or worse. It may be obvious where
this is going: the problem is that if we retrain the current production model from
scratch on the current data, that model may well be significantly different from the
current production model that is in production (which was trained iteratively on the
same data over time). The fraudulent transactions listed previously will just never
be trained on rather than be trained on, left for a while, and then deleted later. The
situation is actually even less deterministic than that: even if we train the exact same
model on the exact same data with no changes, we might have nontrivial differences,
with one model trained all at once and another trained incrementally over several
updates.15

This kind of really unnerving problem is why model quality must be jointly owned
by model, infrastructure, and production engineers together. The only real reliability
solution to this problem is to treat each model as it is trained as a slightly different
variant of the Platonic ideal of that model and fully renounce the idea of equality
between trained models, even when they are the same model configuration trained
by the same computers on the same data twice in a row. This, of course, may tend to
massively increase the cost and complexity of regression testing. If we absolutely need
them to be more stable (note that this is not “the same” since we cannot achieve that
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16 Ensemble models are just models that are collections of other models. Their most common use is to combine
multiple very different models for a single purpose. In this case, we would combine multiple copies of the
same model.

in most cases), then we may have to start thinking about ensembles of copies of the
same model so that we minimize the change over time.16

Compute Resource Capacity
Just as it is a common cause of outages in non-ML systems, lack of sufficient capacity
to train is a common cause of outages for ML systems. The basic capacity that we
need to train a new model includes the following:

I/O capacity
This is capacity at the feature store so that we can read the input data quickly.

Compute capacity
This is the CPU or accelerator of the training jobs so that we can learn from the
input data. This requires a pretty significant number of compute operations.

Memory read/write capacity
The state of the model at any given time is stored somewhere, but most com‐
monly in RAM, so when the training system updates the state, the system
requires memory bandwidth to do so.

One of the tricky and troubling aspects of ML training system capacity problems is
that changes in the distribution of input data, and not just its size, can create compute
and storage capacity problems. Planning for capacity problems in ML training sys‐
tems requires thoughtful architectures as well as careful and consistent monitoring.

Example Capacity Problem at YarnIt
YarnIt updates many models each day. These are typically trained during the lowest
usage period for the website, which is whatever is nighttime for the largest number of
users, and are expected to be updated before the start of the busy period the following
day. Timing the training in this way gives us the possibility to reuse some resources
between the online serving and the ML training system. At the very least, we will
need to read the logs produced by the serving system, since the models that YarnIt
trains daily read the searches, purchases, and browsing history from the website the
day before.

As with most ML models, some types of events are less computationally compli‐
cated to process than others. Some of the input data in our feature store requires
connections to other data sources in order to complete the input for some training
operations. For example, when we show purchases for products listed by our partners
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rather than by YarnIt directly, we need to look up details about that partner in order
to continue to build models that accurately predict customer preferences about those
products from that partner. If, for whatever reason, the portion of our purchases from
partners increases over time, we might see a significant capacity shortfall in the ability
to read from the partner information datasets. Furthermore, this might appear as
if we have run out of compute capacity, when actually the CPUs are all waiting on
responses from the partner data storage system.

Additionally, some models might be more important than others, and we probably
want a system for prioritization of training jobs in those cases where we are resource
constrained and need to focus more resources on those important models. This
commonly occurs after an outage. Imagine we have a 48-hour outage of some part
of the training system. At that point, we have stale models representing our best view
of the world over two days ago. Since we were down for so long, it is reasonable to
expect that we will take time to catch up, even using all of the machine resources that
we have available. In this case, knowing which models are most important to refresh
quickly is extremely useful.

Structural Reliability
Some of the reliability problems for an ML training system come not from the code
or the implementation of the training system, but instead from the broader context
in which these are implemented. These challenges are sometimes invisible to systems
and reliability engineers because they do not show up in the models or the systems.
These challenges show up in the organization and the people.

Organizational Challenges
Many organizations adding ML capabilities start by hiring someone to develop a
model. Only later do they add ML systems and reliability engineers. This is reason‐
able to a point, but to be fully productive, model developers need a stable, efficient,
reliable, and well-instrumented environment to run in. While the industry has rel‐
atively few people who have experience as production engineers or SREs on ML
systems, it turns out that almost all the problems with ML systems are distributed
systems problems. Anyone who has built and cared for a distributed system of similar
scale should be able to be an effective production engineer on our ML system with
some time and experience.

That will be enough for us to get started adding ML to our organization. But if we
learned anything from the preceding failure examples, it is that some are extremely
straightforward but others really do involve understanding the basics of how the
models are structured and how the learning algorithms work. To be successful over
the long term, we do not need ML production engineers who are experts in ML, but
we do need people who are actively interested in it and are committed to learning

160 | Chapter 7: Training Systems



more details about how it works. We will not be able to simply delegate all model
quality problems to the modeling team.

Finally, we will also have a seniority and visibility problem. ML teams are more
likely to get more senior attention than many other similarly sized or scoped teams.
This is at least in part because when ML works, it is applied to some of the most
valuable parts of our business: making money, making customers happy, and so on.
When we fail at those things, senior leaders notice. ML engineers across the whole
ecosystem need to learn to be comfortable communicating at a more senior level of
the organization and with nontechnical leaders who have an interest in their work,
which can have serious reputational and legal consequences when it goes wrong.
This is uncomfortable for some of these engineers, but managers building ML teams
should prepare them for this eventuality.

For a more in-depth discussion about organizational considerations beyond just the
training system, see Chapters 13 and 14.

Ethics and Fairness Considerations
ML can be powerful but also can cause powerful damage. If no one in our organi‐
zation is responsible for ensuring that we’re using ML properly, we are likely to
eventually run into trouble. The ML training system is one place where we can
have visibility into problems (model quality monitoring) and can enforce governance
standards.

For organizations that are newer to implementing ML, the model developers and
ML training system engineers may be jointly responsible for implementing minimal
privacy, fairness, and ethics checks. At a minimum, these must ensure that we are
compliant with local laws regarding data privacy and use in every jurisdiction in
which we operate. They must also ensure that datasets are fairly created and curated
and that models are checked for the most common kinds of bias.

One common and effective approach is for an organization to adopt a set of Respon‐
sible AI principles and then, over time, build the systems and organizational capacity
to ensure that those principles are consistently and successfully applied to all uses
of ML at the organization. Think about how to be consistent at the model level
(Chapter 5), policy level (Chapter 6), but also apply principles to data (Chapter 4),
monitoring (Chapter 9), and incident response (Chapter 11).
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Conclusion
Although ML training system implementers will still need to make many choices, this
chapter should provide a clear sense of the context, structure, and consequences of
those choices. We have outlined the major components of a training system as well as
many of the practical reliability principles that affect our use of those systems. With
this perspective on how trained models are created, we can now turn our attention to
the following steps in the ML lifecycle.
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CHAPTER 8

Serving

You’ve made a model; now you have to get it out there into the world and start pre‐
dicting things. This is a process often known as serving the model. That’s a common
shorthand for “creating a structure to ensure our system can ask the model to make
predictions on new examples, and return those predictions to the people or systems
that need them” (so you can see why the shorthand was invented).

In our yarnit.ai online store example, we can imagine that our team has just created a
model that is great at predicting the likelihood that a given user will purchase a given
product. We need to have a way for the model to share its predictions with our overall
system. But how, exactly, should we set this up?

We have a range of possibilities, each with different architectures and trade-offs. They
are sufficiently different in approach that it might not be obvious looking at the
list that these are all attempts to solve the same problem: how can we integrate our
predictions with the overall system? We could do any of the following:

• Load the model into 1,000 servers in Des Moines, Iowa, and feed all incoming•
traffic to these servers.

• Precompute the model’s predictions for the 100,000,000 most commonly seen•
combinations of yarn products and user queries using a big offline batch-
processing job. Write those to a shared database once a day that is read by our
system, and use a default score of p = 0.01 for anything not in that list.

• Create a JavaScript version of the model and load it into the web page so that•
predictions are made in the user’s browser.

• Create a mobile app that has the model embedded into it so that predictions are•
made on the user’s mobile device.
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1 In some cases, however, your choices about how to arrange computation are fixed and cannot be changed.
Models that must be served on a device are one such example. Say we are deploying a model within a mobile
app that uses image recognition to identify knitting patterns for sweaters from pictures taken with a mobile
camera phone. We might choose to implement that image recognition directly on the mobile device, and
by avoiding sending pictures to servers elsewhere, we’ll improve latency and reliability, and potentially even
privacy—though for mobile devices, ML computation is generally battery-expensive.

• Have different versions of the model with different trade-offs of computational•
cost and accuracy. Create a tiered system in which versions of the model are
available in the cloud, using different hardware with different costs. Send the easy
queries to a cheaper (less accurate) model and send the more difficult queries to a
more expensive (more accurate) model.

This chapter is devoted to helping us map out the criteria for selecting from choices
like this. Along the way, we will also discuss critical practicalities like ensuring that
the feature pipeline used in serving is compatible with that used in training, and
strategies for updating a model in serving.

Key Questions for Model Serving
There are a lot of ways that we can think about creating structures around a model
that support serving, each with very different sets of trade-offs. To help navigate this
space, it’s useful to think through some specific questions about the needs for our
system.

What Will Be the Load to Our Model?
The first thing to understand about our serving environment is the level of traffic
that our model will be asked to handle—often referred to as queries per second (QPS)
when queries are made on demand. A model serving predictions to millions of daily
users may be asked to handle tens of thousands of queries per second. A model that
runs an audio recognizer that listens for a wake word on a mobile device, like “Hey
YarnIt,” may run at a few QPS. A model that predicts housing prices for a real estate
service might not be served on demand at all, and may instead be run as part of a
large batch-processing pipeline.

A few basic strategies can address large traffic load. The first is to replicate the
model across many machines and run these in parallel—perhaps using a cloud-based
platform to allow a combination of traffic distribution and easy scaling up as demand
grows. The second is to use more powerful hardware, such as hardware accelerators
like GPUs or other specialized chips. These often require batching requests together
to maximize efficiency, because the chips are so powerful that they can be bottle‐
necked more on input and output rather than on computing the model predictions
themselves.1
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We could also tune the computation cost of the model itself, perhaps by using fewer
features, or a deep learning model with fewer layers or parameters, or approaches
such as quantization and sparsification to make the internal mathematical operations
less expensive. Model cascades can also be effective at cost reduction—this is where
a cheap model is used to make first-guess decisions on easy examples, and only the
more difficult examples are sent to a more expensive model.

What Are the Prediction Latency Needs of Our Model?
Prediction latency is the time between the moment we make a request and the
moment we get an answer back. Acceptable prediction latency can vary dramatically
among applications, and is a major determiner of serving architecture choices.

For an online web store like yarnit.ai, we might have a total time budget of only half
a second between the time that the user types in a query like “merino wool yarn” and
the time they expect to see a full page of suggested products. Factoring in network
delays and other processing necessary to build and load the page, this might mean
that we have only a few milliseconds for the model to make all of its predictions
on candidate products. Other very low-latency applications might include models
that are used in high-frequency trading platforms, or that do real-time guidance of
autonomous vehicles.

On the other end of the spectrum, we might have a model that is being used to
determine the optimal spot to drill for oil, or that is trying to guide the design of
protein sequences to be used to create new antibody treatments. For applications like
these, latency is not a major concern because using these predictions (such as actually
creating an oil rig or actually testing a candidate protein sequence in the wet lab) is
likely to take weeks or months. Other application modalities have implicit delays built
in. For example, an email spam-filtering model might not need to have millisecond
response time if a user checks their inbox only every morning.

Taken together, latency and traffic load define the overall computational needs of our
ML system. If prediction latency is too high, we can mitigate the issue by using more
powerful hardware, or by making our model less expensive to compute. However, it is
important to note that parallelization by creating a larger number of model replicas is
usually not a solution to prediction latency, as the end-to-end time it takes to send a
single example through the model isn’t affected by simply having more versions of the
model available.

Real systems often produce a distribution of latency values, due to network effects
and overall system load. It can be useful to look at tail latency, such as the worst few
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2 Tail latency refers to the longest latencies of the total distribution of latencies observed when querying a
model. If we query a model many times and order the latency it takes to get a response from shortest to
longest, we might find a distribution for which the median response time is quite fast. But in some cases we
have a long tail of much, much longer responses. This is the tail, and the durations are the tail latencies. See
“The Tail at Scale” by Jeffrey Dean and Luiz André Barroso for more.

percent, rather than average latency, so that we do not miss noticing if a percentage of
requests are getting dropped.2

Where Does the Model Need to Live?
In our modern world, defined as it is by flows of information and concepts like
virtual machines and cloud computing, it can be easy to forget that computers are
physical devices, and that a model needs to be stored on a physical device in a specific
location. We need to determine the home (or homes) for our model, and this choice
has significant implications on the overall serving system architecture. Here are some
options to consider.

On a local machine
Although this is not really a production-level solution, in some cases a model devel‐
oper may have a model running on their local machine, perhaps invoking small batch
jobs to process data when needed. This is not recommended for anything beyond
small-scale prototyping or bespoke uses. Even in these cases, it is easy to come to
rely on this in early stages and create more trouble than expected when we need to
migrate to a production-level environment.

On servers owned or managed by our organization
If our organization owns or operates its own servers, we likely will run our models on
this same platform. This may be especially important when specific privacy or secu‐
rity concerns are in place. It may also be the right option if latency is a hypercritical
concern, or if specialty hardware is needed to run our models. However, this choice
can limit flexibility in terms of ability to scale up or down, and will likely require
special attention to monitoring.

In the cloud
Serving our models by using a cloud-based provider can allow for easily scaling our
overall computational footprint up or down, and may also allow us to choose from
several hardware options. This may be done in two ways. The first, running model
servers on our own virtual servers and controlling how many of them we use, is
essentially indistinguishable from the preceding option of using servers owned or
managed by our organization. In this case, it might be slightly easier to scale up or
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scale down the number of servers, but the management overhead is otherwise similar.
Here we’re more interested in the second case: using a managed inference service.

In a managed inference service, some monitoring needs may be automatically
addressed—although we will still likely need to independently verify and monitor
overall model quality and predictive performance. Round-trip latency will likely be
higher because of network costs. Depending on the geographical location of the
actual datacenters, these costs may be higher or lower, and we may be able to mitigate
some of these issues by using datacenters in multiple major geographical locations if
we will be fielding requests globally. Privacy and security needs are also highlighted
here, as we will be sending information across the network and will need to ensure
that appropriate safeguards are in place. Finally, in addition to privacy and security
concerns, we may have governance reasons for being cautious about using particular
cloud providers: some online activities are regulated by national governments in a
way that requires certain data to be kept in particular jurisdictions. Make sure you
know about these factors before making a serving layout plan.

On-device
Today’s world is filled with computational devices that are part of our daily lives.
Everything from mobile phones to smart watches, digital assistants, automobiles,
thermostats, printers, home security systems, and even exercise equipment have a
surprising amount of computational capacity, and developers are finding ML applica‐
tions in nearly all of them. When a model is needed in these settings, it is much
more likely that it will need to be stored on the device itself, because the alternative
is to access a model in the cloud, which requires constant network connection and
may also have complicated privacy concerns. These settings of serving “on the edge”
typically have strict constraints on model size, because memory is limited, as well as
the amount of power that may be consumed by model predictions.

Updating the model in such settings typically requires a push across the network, and
is unlikely to happen for all such devices in a timely fashion; some devices may never
receive any updates at all. Because of the difficulty of making fixes to push updates,
testing and verification take on a whole new level of importance in these settings. In
some critical use cases, such as a model that continually needs to scan input audio
for certain commands, it may even be necessary to encode the model at the hardware
level rather than the software levels. This can yield huge efficiency improvements, but
at the cost of making updates more difficult—or even impossible.

What Are the Hardware Needs for Our Model?
In recent years, a range of computational hardware and chip options has emerged
that has enabled dramatic improvements in serving efficiency for various model
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3 Think millions or billions of individual arithmetic operations for one prediction from a deep neural network.
4 While GPUs are by far the most common type of ML hardware accelerator used in training and serving, many

other specialized accelerator architectures are designed specifically for ML. Companies like Google, Apple,
Facebook, Amazon, Qualcomm, and Samsung Electronics all have ML accelerator products or projects. This
space is changing rapidly.

5 Indeed, GPUs are so good at computation that they are often bottlenecked not on their ability to do the matrix
multiplications, but instead on bandwidth for getting data in and out of the chip. Batching requests together
to amortize the input and output costs can be an extremely effective strategy, in many cases allowing us to
process hundreds of requests with the same wall-clock latency as a single request. The only problem with
batching is that we may be slower waiting for enough requests to come in to create a batch of sufficient size,
but in environments with high load, this is not usually an issue.

types. Understanding these options is important for informing our overall serving
architecture.

The main thing to know about deep models in serving is that they rely on dense
matrix multiplications, which basically means that we need to do a lot of multiplica‐
tion and addition operations in a way that is compute intensive, but that is also
highly predictable in terms of memory access patterns.3 The little multiplication
and addition operations that make up one dense matrix multiplication operation
parallelize beautifully. This means that traditional CPUs will struggle to perform well.
At the time of writing, a typical CPU has around eight cores, each with one or at
most a small number of algorithmic logic units (ALUs), which are the pieces of the
chip that know how to do multiplication and addition operations. Thus, CPUs can
typically parallelize only a handful of these operations at once, and their strengths in
handling branching, memory access, and a wide variety of computational operations
don’t really come into play. This makes running inference for deep learning models
slow on CPUs.

A much better choice for serving deep learning models are chips called hardware
accelerators. The most common ones are GPUs because these chips were first devel‐
oped for processing graphics, which also rely on doing fast dense matrix multiplica‐
tions.4 The main insight in a GPU is that if a few ALUs are good, thousands must
be better. GPUs are thus great at the special-purpose task of dense matrix multiplica‐
tions, but typically are not well suited to other tasks.5

Of course, GPUs have drawbacks, the most obvious of which is that these are special‐
ized hardware. This typically means that either we need to invest organizationally in
serving deep models using GPUs, or we are using a cloud service that supplies GPUs
(and may charge a premium accordingly), or that we are serving in an on-device
setting where a GPU is locally available.

The other main drawback of GPUs is that they’re not well suited to operations not
involving large amounts of dense matrix multiplications. Sparse models are one such
example. Sparse models are most useful when we need to use only a small number
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of important pieces of information out of a large universe of possibilities, such as
the specific words that show up in a given sentence or search query out of the large
universe of all possible words. With appropriate modeling, sparsity can be used in
these settings to dramatically reduce computational cost, but GPUs can’t easily benefit
from this and CPUs may be much more appropriate. Sparse models may include
nondeep methods such as sparse linear models or random forests. They can also
appear in deep learning models as sparse embeddings, which can be thought of as
a learned input adapter that converts sparse input data (such as text) into a dense
representation that is more easily used within a deep model.

How Will the Serving Model Be Stored, Loaded, Versioned, and
Updated?
As a physical object, our serving model has a specific size that needs to be stored. A
model that is serving offline in an environment might be stored on disk and loaded in
by specific binaries in batch jobs whenever a new set of predictions needs to be made.
The main storage requirements are thus the disk space needed to keep the model, as
well as the I/O capacity to load the model from disk, and the RAM needed to load the
model into memory for use—and of these costs, the RAM is likely more expensive or
more limited in capacity.

A model that is used in live online serving needs to be stored in RAM in dedicated
machines, and for high-throughput services in latency-critical settings, copies of this
model likely will be stored and served in many replica machines in parallel. As we
discuss in Chapter 10, most models will need to be updated eventually by retraining
on new data, and some are updated weekly, daily, hourly, or even more frequently.
This means that we will need to swap the version of a model currently used in serving
on a given machine with a new version.

If we want to avoid production outages while this happens, we have two main
strategies. The first is to allocate twice as much RAM for the serving jobs, so that
the new version of the model can be loaded into the machine while the old one is
still serving, and then hot-swapping which one is used once the new version is fully
ready. This works well but is wasteful of RAM for the majority of the time when a
model is not being loaded or swapped. The second is to overprovision in terms of
the number of replica machines by a certain percentage and then to progressively
take a proportion (e.g., 10%) offline in turn to update the model. This more gradual
approach also allows for more graceful error checking and canarying.

It is also important to remember that if we want our system to support A/B testing,
which most developers will want to use, then it will be important to create an archi‐
tecture that allows both an A and a B version of the model to be served—and indeed,
developers may want to have many kinds of Bs running in A/B tests at the same time.
Deciding exactly how many versions will be supported and at what capacity is an
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important architectural choice that requires balancing resourcing, system complexity,
and organizational requirements together.

What Will Our Feature Pipeline for Serving Look Like?
Features need to be processed at serving time as well as at training time. Any feature
processing or other data manipulation that is done to our data at training time will
almost certainly need to be repeated for all examples sent to our model at serving
time, and the computational requirements for this may be considerable. In some
cases, this is as simple as converting the raw pixel values of an image into a dense
vector to be fed to an image model. In more typical production settings, it may
require joining several sources of information together in real time.

For example, for our yarnit.ai store, we might need to supply a product recommenda‐
tion model with the following:

• Tokenized normalized text from a user query, drawn from the search box entry•
• Information about past purchase history, drawn from a stored database of user•

information
• Information about product prices and descriptions, drawn from a stored product•

database
• Information about geography, language, and time of day, drawn from a localiza‐•

tion system

Each kind of information comes from a different source, and may have different
opportunities for precomputation or reuse from query to query or session to ses‐
sion. In many cases, this means that the actual code used to turn these pieces of
information into features for our ML model to use may be different at serving time
from the code used for similar tasks at training time. This distinction is one of the
main sources of classic training-serving skew errors and bugs, which are notoriously
difficult to detect and debug. For a much more in-depth discussion of this kind of
skew, and others, see Chapter 9.

One of the promises of modern feature stores is that they handle both training and
serving together in a single logical package. The reality of this promise may differ by
system and use case, so it is well worth ensuring robust monitoring in any case.

It is also worth noting that creating features for our model to use at serving time is a
key source of latency, and in many systems will be the dominating factor. This means
that the serving feature pipeline is far from an afterthought, and is indeed often the
most production-critical part of the entire serving stack.
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Model Serving Architectures
With the preceding questions in mind, we will now examine four broad categories
of serving architectures. Obviously, each needs to be tailored to specific use cases,
and some serving systems may use a combination of approaches. With that said,
we observe that most of the architecture and deployment approaches fall into the
following four broad categories:

• Offline•
• Online•
• Model as a service•
• Serving at the edge•

We look at each in detail now.

Offline Serving (Batch Inference)
Offline serving is often the simplest and fastest architecture to implement. The appli‐
cation serving the end user is not exposed to the models directly. Models are trained
ahead of time, often referred to as batch inference.

Batch inference is a way to avoid the problem of hosting a model to be reachable
for predictions on demand when you don’t need that. It works by loading the model
and executing its predictions offline against a predefined set of input data. As a
result, the model’s predictions are stored as a simple dataset, perhaps in a database
or a .csv file or another resource that stores data. Once these predictions are needed,
the problem is identical to any other problem for which static data resources need to
be loaded from data storage. In essence, by computing the model predictions offline,
you convert on-demand model predictions into a more standard problem of simple
data lookup (Figure 8-1).

For example, the popularity of each product on yarnit.ai for a given subset of users
can be computed offline—perhaps at a convenient low-load time, if doing so is
expensive in some way—and used as a sort function helper when displaying arbitrary
items at any point as required to render the page.
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Figure 8-1. Offline model serving via data store

If the use case is less demanding, we might even be able to avoid the complexity of
storing and serving model predictions via a database and write the predictions to a
flat file, or in-memory data structure, and use them directly within the application
(Figure 8-2). As an example, our web store could use a search query intent classifier
(specific product versus broad category) to help the query engine rewrite the query
for retrieving the search results efficiently. (You could, of course, build an approxima‐
tion to the same structure by, say, indexing yarn by fiber content as a hash containing
wool, cotton, acrylic, blends, etc., and/or a reverse hash.)

Figure 8-2. Offline model serving via in-memory data structures
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Advantages
The advantages of offline serving are as follows:

Less complicated
This approach requires no special infrastructure. Often you can reuse something
you already have, or start something small and simple. The runtime system has
fewer moving parts.

Easy access
Applications facilitating the use case can perform simple key-value lookups or
SQL queries based on the data store.

Better performance
Predictions are provided quickly, since they have been precomputed. This might
be an overriding consideration for certain mission-critical applications.

Flexible
By using separate tables or records based on an identifier, this approach provides
a flexible and easy way to roll out and roll back various models.

Verification
The ability to verify all model predictions before use is a significant benefit for
establishing correct operation.

Disadvantages
The disadvantages of offline serving are listed here:

Availability of data (training)
Training data needs to be available ahead of time. Hence, model enhancements
will take longer to deploy into production systems. Also, a critical upstream data
outage could lead to stale models, days’ worth of delays, permanently lost data,
and expensive backfill processes to “catch up” the offline job to a current state.

Availability of data (serving)
Effectively, the serving data needs to be available ahead of time; for fully correct
operation, the system needs to know in advance every possible query that will be
made of it. This is simply impossible in many use cases.

Scaling
Scaling is difficult, especially for use cases dependent on large datasets or large
query spaces. For example, you can’t handle a search query space with a long
tail—i.e., many different queries, the bulk of which aren’t commonly used—with
high accuracy and low latency.
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Capacity limits
Storing multiple model outputs in memory or in application databases will have
storage limitations and/or cause performance problems. This will impact the
ability to run multiple A/B tests at the same time. This may not cause a real
problem, provided that the database and query resource requirements scale at
similar rates and provided we have enough resources to provision.

Less selectivity
Since models and predictions are precomputed, we won’t be able to influence the
predictions by using online context.

Online Serving (Online Inference)
In contrast to the preceding approach, online serving does not rely on precomputed
outputs from a fixed query space. Instead, we provide predictions in real time by
ingesting/streaming samples of real-time data, generally from user activity. In our
web store example, we could build a more personalized shopping experience by
having the model constantly learn the real-time user behavior by using the current
context along with historical information to make the predictions. The current con‐
text might include location, views/impressions on precomputed recommendations,
recent search sessions, items viewed, or items added to and removed from the basket.

Because all of this activity can be taken into account at prediction time, this allows
significantly more flexibility in how to respond. Applications powered by inferences
generated by offline models plus training the supplemental models for additional
parameters in real time (Figure 8-3) provides huge benefits and significant business
impacts.

Figure 8-3. Hybrid online model serving in combination with predictions generated
offline
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Advantages
Advantages of online serving include the following:

Adaptability
Online models learn as they go, and so greatly reduce the cadence with which
model retraining and redeployment are required. Instead of adapting to concept
drift at deployment time, the model adapts to concept drift at inference time,
improving the performance of the model for customers.

Amenable to supplemental models
Instead of training and changing one global model, we can tune more situation-
specific models with a small subset of real-time data (for example, user- or
location-specific models).

Disadvantages
Here are some disadvantages of the online-serving approach:

Latency budget required
The model needs access to all relevant features. It will need quick access to new
queries so that it can convert them into features and in turn look up relevant
features stored elsewhere. If all the data we need for a single training example
can’t be sent to the server as part of the payload on the API call, we need to grab
that data from somewhere else in milliseconds. Typically, that means using an
in-memory store of some kind (for example, Redis).

Deployment complexities
As the predictions are made in real time, rolling out the model changes is highly
challenging, especially in a container-orchestration environment like Kubernetes.

Scalability constrained
Since a model can and will change from time to time, it’s not horizontally
scalable. Instead, we might need to build a cluster of single-model instances that
can consume new data as quickly as possible, and return the sets of learned
parameters as part of the API response.

Higher oversight requirements
This approach needs more advanced monitoring and adjustment/rollback mech‐
anisms in place, since real-time changes could well include fraudulent behaviors
caused by the bad actors in the ecosystem, and they could interact with, or
influence, model behavior in some way.

Higher management requirements
In addition to strong monitoring and rollback mechanisms, doing this correctly
requires nontrivial expertise and fine-tuning to get right, both for data science
and product engineering. Therefore, this approach is probably worth it for only
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6 gRPC is an open source RPC system initially developed by Google. Representational State Transfer (REST) is
a widely used pattern for APIs that developers follow when they create web APIs.

critical line-of-business applications, usually with high monetary impact for the
business.

Serving models online is more powerful when it’s combined with the model-as-
a-service approach we discuss in the following section. We note in passing that
real-time predictions can be served either synchronously or asynchronously. While
synchronous mode is more straightforward and simpler to reason about, asynchro‐
nous mode gives us a lot more flexibility to handle the way results are passed
around, and enable approaches like sending predictions via push or pull mechanisms,
depending on the application and the end client (browser, app, device, internal
service, etc.).

Model as a Service
The Model-as-a-Service (MaaS) approach is similar to software as a service and
inherently favors a microservice architecture. With MaaS, models are stored in a
dedicated cluster and served results via well-defined APIs. Regardless of the transport
or serialization methods (e.g., gRPC or REST),6 because models are served as a
microservice, they’re relatively isolated from the main application (Figure 8-4). This
is therefore the most flexible and scalable deployment/serving strategy, since no
in-process interaction or tight coupling are necessarily required.

Figure 8-4. Models served as a separate microservice

Given the wide popularity of X-as-a-service approaches throughout the industry, we
will focus on this particular method more than others, and will examine in detail
various aspects of serving model predictions via APIs later in the chapter.
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Advantages
The following are advantages of MaaS:

Leveraging context
By definition in the MaaS context, we have the ability to serve predictions in real
time by using real-time context and new features.

Separation of concerns
A separate service approach allows ML engineering to make model adjustments
in a stabler way, and apply well-known techniques for managing operational
problems. Most models of the MaaS type can be organized in a stateless way
without any shared configuration dependencies. In these cases, adding a new
model-serving capacity is as simple as adding new instances to the serving
architecture, also known as horizontal scaling.

Deployment isolation
As per any development architecture in which RPCs are the sole method of
communication, the choice of technical stack could vary between application
and model service layers, allowing respective teams to develop very differently if
required. Independent deployment cycles could follow too, and make it a little
easier to deploy versions on different timescales, or multiple environments: QA,
staging, canaries, etc.

Version management
Versioning is easy to proliferate, since we can store multiple versions of the
models in the same cluster and point to them as required; this is extremely con‐
venient for A/B testing, for example. The version-identifying information about
the model being used can often be designed as a part of the service’s response
data as well. Among other benefits, this allows for rolling redeployments because
stakeholder systems can rely on a model identifier to track, route, and collate
any event data that may be generated as a result of using the ML model, such as
tracking which model was used to serve a particular result in an A/B test.

Centralization facilitates monitoring
Because the model architecture is centralized, it’s comparatively easier to monitor
system health, capacity/throughout, latency, and resource consumption, as well
as per model business metrics like impressions, clicks, conversions, and so on.
If we design architectural components that wrap inputs/outputs and standardize
the process of identifying models and loading them from configs, many of the
SRE “golden four” types of observability metrics can be obtained “for free” just
by plugging into other predefined tools that provide these for other general
microservices.
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Disadvantages
MaaS disadvantages are as follows:

Management overhead
When you climb aboard the microservice train, getting off is difficult, and a
lot of overhead is required to stay onboard safely and well. However, this over‐
head does at least have the advantage of being somewhat well documented and
understood.

Organizational compliance
When we reply on the standard framework for deploying microservices, we
might initially get a lot of things “for free,” such as log aggregation, metrics
scraping and dashboarding, tracking metadata for containers and compute usage,
and managed delivery software that converts a code build or release into a real
deployment. But we will also get change requests to comply with privacy, security
standards, authentication, auditing, resource limitations, and various migrations.

Latency budgets required
In any kind of microservice architecture that effectively externalizes your call
stack, latency becomes a critical and unignorable constraint. Since user-perceived
latency needs to be kept within reasonably tight constraints (subsecond, ideally),
this imposes performance-related constraints on all the other systems you’ll
communicate with. It also potentially creates an organizational blind spot around
user-perceived performance, since (by default in siloed enterprises) no one team
will own that performance as a whole. As a result, the choice of underlying data
stores, languages, and organizational structure and patterns becomes important.

Distributed availability
Architectures built on distributed microservices must be able to tolerate partial
failures robustly. The calling service must have reasonable fallbacks when the
model service is down.

Serving at the Edge
A slightly less commonly understood serving architecture is used when a model is
deployed onto edge devices (Figure 8-5). An edge device might be anything from an
Internet of Things (IoT) doorbell to self-driving vehicles, or anything in between.
Today, the bulk of edge devices with an internet connection are modern smartphones.
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7 Federated learning is an approach that trains a model across multiple disconnected edge devices. Read more
at TensorFlow.

Figure 8-5. Models served at the edge and as a separate microservice on the server

Usually these models don’t exist on their own: a server-side supplemental model of
some kind helps fill the gaps. It’s also common that most edge applications primar‐
ily rely on on-device inferences. That might change in the future, with emerging
techniques like federated/collaborative learning.7 The closeness to the user is a great
advantage for some applications, but we often face severe resource limits in this
architecture.

Advantages
Serving at the edge has these advantages:

Low latency
Putting the model on the device allows it to be quicker. Near-instantaneous
response (and no risk of dropped packets, etc.) to predict things can be abso‐
lutely critical for some applications: high latency or jitter in self-driving vehicles
could cause accidents, injuries, or even deaths. Running models on edge devices
is essentially compulsory here.

More-efficient network usage
The more queries you can answer locally, the fewer you have to send over the
network.

Improved privacy and security
Making inferences locally means that the user data and the predictions made on
that data are much harder to compromise. This is really useful for personalized
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search, or recommendations that might require PII such as user profile, location,
or transaction history.

More reliable
When the network connection is not consistently stable, being able to execute
certain operations locally that were previously executed remotely becomes desir‐
able and sometimes even necessary.

Energy efficiency
One key design requirement of edge devices is energy efficiency. In certain cases,
local computing consumes less energy than network transmission.

Disadvantages
The following are disadvantages of serving at the edge:

Resource constraints (specialization)
With limited computing power, edge devices can perform only a few tasks. Non-
edge infrastructure should still handle training, building, and serving of large
models, while edge devices can perform local inferences with smaller models.

Resource constraints (accuracy)
ML models can consume lots of RAM and be computationally expensive; fitting
these on memory-constrained edge devices can be difficult or impossible. The
good news is a lot of research is ongoing to find alternative ways to address this;
for example, parameter-efficient neural networks like SqueezeNet and MobileNet
are both attempts to keep the models small and efficient without sacrificing too
much accuracy.

Device heterogeneity (device-specific programming languages)
Coming up with a way to ensure that edge serving and on-device training
happen precisely the same on both iOS and Android, for example, is a significant
challenge. Doing it efficiently within the context of mobile development best
practices also involves the intersections of two highly domain-specific groups of
people (ML engineers and mobile engineers), which can create organizational
strain on scarce shared specialty teams or prevent embracing standardized team
models for full-stack development. A similar set of interactions exists whenever
software is deployed into public-facing use as a service. For example, an account‐
ing service available on the web will require that software engineers expert
in building accounting systems deal with production engineers experienced at
running software in production. The difference here is mostly of degree: ML
engineers and mobile engineers come from extremely different worlds and tech‐
nical contexts and are unlikely to communicate well without effort.
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Device software versions are in the user’s control
Unless you use a backend-for-frontend proxy service design pattern to route
various calls off-device into a server-side backend, the owner of the edge device
controls the software update cycles. We might push out a critical improvement
to an on-device ML model in an iOS app, but that doesn’t mean that millions
of existing users have to update the version on their iPhones. They might wait
around and continue using the outdated version for as long as they would like.
Because any ML model deployed to the edge device might need to robustly keep
operating and have its prediction and on-device learning setup continue working
for a long time, it’s a huge architectural commitment that might carry a lot
of future-looking tech debt and legacy support with it, and should be chosen
carefully.

One of the important attributes you need to track when serving ML
models in production is versioning. Feedback loop data, backups,
disaster recovery, and performance measurement all rely on it. We
discuss these ideas in more detail in Chapter 9. In particular, we
will look at suggested measurements in two sections: serving and
SLOs.

Choosing an Architecture
Having talked about the various architecture options, we now need to choose the
right one! Depending on the use case, that could be a complex affair; the differences
between the model lifecycles, formats, and so on are one axis of consideration, never
mind the vast implementation landscape that exists.

Our recommended approach is to first consider the amount of data and speed of
the data required for your application: if extremely low latency is the priority, use
offline/in-memory serving. Otherwise, use MaaS, except when you’re running on an
edge device, in which case serving at the edge is (obviously) the most appropriate.

The rest of this chapter focuses on MaaS, since it’s more flexible, and pedagogically
better since it suffers from fewer constraints.

Model API Design
Production-scale ML models are usually built using a wide variety of programming
languages, toolkits, frameworks, and custom-built software. When trying to integrate
with other production systems, such differences limit their accessibility, since ML and
software engineers may have to learn a new programming language or write a parser
for a new data format, and their interoperability, requiring data format converters and
multiple language platforms.
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8 Resource-oriented architectures (as compared to service-oriented architecture) extend the REST pattern for
web API building. A resource is an entity that has a state that can be assigned to a uniform resource locator
(URL). See “An Overview of Resource-Oriented Architectures” by Joydip Kanjilal for an overview.

9 Similarly, service-oriented architecture is an approach whereby an application is decomposed into a series of
services. It’s a somewhat overused term that often means different things to different people in the industry
(as is reflected in “Service-Oriented Architecture” by Cesar de la Torre et al.)

One way of improving the accessibility and interoperability is to provide an abstrac‐
ted interface via web services. Resource-oriented architectures (ROAs) in the REST
style appear well suited to this task, given the natural alignment of REST’s design phi‐
losophy with the desire to hide implementation-specific details.8 Partially in support
of this view, we’ve seen rapid growth in the area of ML web services in recent years:
for example, Google Prediction/Vision APIs, Microsoft Azure Machine Learning, and
many more.

Most service-oriented architecture (SOA) best practices apply to ML model/inference
APIs too.9 But you’ll want to take note of the following points for models:

Data science versus engineering skills
Many organizations have a pure data science team, with little or no experience
running services in production. To gain all the benefits of DevOps, however, you
will want to empower the data science team to take full ownership of releasing
its models to production. Instead of “handing over” models to another team,
they will collaborate with operations teams and co-own that process from start to
finish.

Representations and models
Even the slightest change in distribution of a feature may cause models to drift.
For complex-enough models, creating this representation may mean numerous
data pipelines, databases, and even upstream models. Handling this relationship
is nontrivial for many ML teams.

Scale/performance characteristics
In general, the predict part of the pipeline is purely compute-bound, something
that is rather unique in a service environment. In many cases, the representation
part of the workflow is more I/O bound, especially when we need to enrich the
input, by loading data/features, or retrieve the image/video we’re trying to predict
on.

We believe the overwhelming factor that drives many design patterns in inference
service design is—perhaps surprisingly—organizational support and skill set. A fun‐
damental tension exists between requiring a data science team to fully own all
end-to-end components of a production deployment and fully separating production
concerns away from the data science team so it may focus fully on its domain
specialization of model training and model optimization.
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Too far in either direction may prove unhealthy. If the data science team is asked
to own too much, or doesn’t have close collaborative partnership with operations sup‐
port teams, it can become overwhelmed dealing with production concerns for which
it has no training. If the data science team owns too little, it may be disconnected
from the constraints or realities of the production system its models must fit into,
and will be unable to remediate errors, assist in critical bug fixes, or contribute to
architectural planning.

So, when we are ready to deploy models in production, we actually deploy two
different things: the model itself and the APIs that go and query the model to fetch
the predictions for a given input. Those two things also generate a lot of telemetry
and a lot of information that’ll later be used to help us monitor the models in
production, try to detect drift or other anomalies, and feed back into the training
phase of the ML lifecycle.

Testing
Testing model APIs, before deploying and serving in production, is extremely critical
because models can be have a significant memory footprint and require significant
computational resources to provide fast answers. Data scientists and ML engineers
need to work closely with the software and QA engineers, and product and business
teams, to estimate API usage. At a minimum, we need to perform the following tests:

• Functional testing (e.g., expected output for given input)•
• Statistical testing (e.g., test the API on 1,000 unseen requests, and the distribution•

of the predicted class should match the trained distribution)
• Error handling (e.g., data type validation in the request)•
• Load testing (e.g., n simultaneous users calling x times/second)•
• End-to-end testing (e.g., validate that all the subsystems are working and/or•

logging as expected)

Serving for Accuracy or Resilience?
When serving ML models, a performance increase doesn’t always mean business
growth. Monitoring and correlating the model metrics with the business key perfor‐
mance indicators (KPIs) help bridge the gap between performance analysis and busi‐
ness impact, integrating the whole organization to function more efficiently toward a
common goal. It is important to view every improvement in the ML pipeline through
business KPIs; this helps in quantifying which factors matter the most.

Model performance is an assessment of the model’s ability to perform a task accu‐
rately, not only with sample data but also with actual user data in real time in a
production setup. It is necessary to evaluate performance to spot any erroneous
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predictions like drift in detection, bias, and increased data inconsistency. Detection is
followed by mitigation of these errors by debugging, based on its behavior to ensure
that the deployed model is making accurate predictions at the user’s end and is resil‐
ient to data fluctuations. ML model metrics are measured and evaluated based on the
type of model that the users are served by (for example, binary classification, linear
regression, etc.), to yield a statistical report that enlists all the KPIs and becomes the
basis of model performance.

Even though improvements in these metrics, such as minimizing log loss or improv‐
ing recall, will lead to better statistical performance for the model, we find that
business owners tend to care less about these statistical metrics and more about
business KPIs. We will be looking for KPIs that provide a detailed view of how well
a particular organization is performing, and create an analytical basis for optimized
decision making. In our yarnit.ai web store example, a couple of main KPIs could be
as follows:

Page views per visit
This measures the average number of pages a user visits during a single site
visit. A high value might indicate an unsatisfactory user experience due to the
enormous digging the user had to do to reach what they want. Alternatively, a
very low value might indicate boredom or frustration with the site and point to
abandonment.

Returning customer order
This measures the orders of an existing customer, and is essential for keeping
track of brand value and growth.

A resilient model, while not the best model with respect to data science measures
like accuracy or AUC, will perform well on a wide range of datasets beyond just the
training set. It will also perform better for a longer period of time, as it’s more robust
and less overfitted. This means that we don’t need to constantly monitor and retrain
the model, which can disrupt model use in production and potentially even create
losses for the organization. While no single KPI measures model resilience, here are a
few ways we can evaluate the resiliency of models:

• Smaller standard deviations in a cross-validation run•
• Similar error rates for longer times in production models•
• Less discrepancy between error rates of test and validation datasets•
• How much the model is impacted by input drift•

We discuss more details about model quality and evaluation in Chapter 5, and API/
system-level KPIs like latencies and resource utilization in Chapter 9.
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Scaling
We’ve exposed the models via API endpoints so they can deliver value to the business
and customers. This is good, but it’s just the beginning. If all goes well, the model
endpoints might see significantly higher workloads in the near future. If the organi‐
zation starts to serve many more users, these increased demands can quickly bring
down the ML services/infrastructure.

ML models deployed as API endpoints need to respond to such changes in demand.
The number of API instances serving the models should increase when requests rise.
When workload decreases, the number of instances should be reduced so that we
don’t end up in a state of underutilization of resources in the cluster, and we could
potentially save a significant amount of operational expenses. This is similar to the
autoscaling in any cloud computing environment in modern software architectures.
Caching can also be efficient in ML environments, just as in traditional software
architectures. Let’s discuss these briefly.

Autoscaling
Autoscaling dynamically adjusts the number of instances provisioned for a model
in response to changes in the workload. Autoscaling works by monitoring a target
metric (e.g., CPU or memory usage) and comparing it to a target value we monitor
for. Additionally, we can configure the minimum and maximum scaling capacity and
a cool-down period to control scaling behavior and price. In our yarnit.ai web store
example, the per language spelling-correction module used for powering search use
cases can be scaled independently from scaling the personalized recommendations
module for sending periodic emails recommending new/similar products based on
customer purchase history.

Caching
Consider the problem of predicting categories and subcategories within our yarnit.ai
online store. A user might search for “cable needles,” and we might predict their
intended shopping area is Equipment → Needles coming from an internal taxonomy
of our store category layout. In a case like this, rather than repeatedly invoke the
expensive ML model each time a repeat query like “cable needles” is encountered, we
could leverage a cache.

For simple cases that have a small number of queries in the cache, this can usually
be solved with a simple in-memory cache, possibly defined directly in the application
logic or in the model’s API server. But if we are dealing with a huge number of
customer queries to fit in the cache, we may want to expand our cache into a separate
API/service that can be independently scaled and monitored.
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10 SLOs are thoroughly introduced in Site Reliability Engineering: How Google Runs Production Systems, and even
more thoroughly covered in Implementing Service Level Objectives by Alex Hidalgo (O’Reilly, 2020).

Disaster Recovery
ML serving via MaaS has all the same failure-recovery requirements as other software
as a service (SaaS) platforms: surviving the loss of a datacenter and diversifying
infrastructure risks, avoiding vendor lock-in, rolling back bad code changes quickly,
and ensuring good circuit breaking to avoid contributing to failure cascades. Separate
from these standard service failure considerations, the deep reliance of ML systems
on training and data pipelines (whether online or offline) creates additional require‐
ments, including accommodating data schema changes and database upgrades,
onboarding new data sources, durable recovery of stateful data resources (like the
state of online learning, or the state of on-device retraining in an edge serving use
case after an app crashes), and graceful failure in the face of missing data or upstream
data ETL job outages—to name but a few.

Data is constantly changing and growing in data warehouses, data lakes, and stream‐
ing data sources: adding new and/or enhancing existing features in the product/ser‐
vice creates new telemetry, a new data source may be added to supplement a new
model, an existing database goes through a migration, someone accidentally begins
initializing a counter at 1 instead of 0 in the last version of the model, and the list can
go on. Any one of such changes brings more challenges to ML systems in production.

We discussed the challenges around data availability in Chapter 7. Without proper
care for failure recovery, ML models that experience unexplained data changes or
data disruptions may need to be taken out of production and iterated offline, some‐
times for months or longer. During the early stages of architecture review, be sure
to ask many questions about how the system will react to unusual data changes and
how the system can be made robust to allow it to continue operating in production.
Additionally, we will inevitably want to expand a successful model’s scope or optimize
a poorly performing model by adding additional data features. It is critical to factor in
this data extensibility as an early architectural consideration to avoid failure scenarios
where we are blocked from being able to ingest a new feature for the model because
of the logistics of accommodating the new data in production.

Also for high availability, we may want to run the model API clusters in multiple
datacenters and/or availability zones/regions in the cloud computing world. This will
allow us to quickly route the traffic when an outage occurs in a specific cluster.
Such deployment architecture decisions are fundamentally driven by the SLOs of the
organization.10 We discuss SLOs in more detail in Chapter 9.

Just as with application data, we need to have backup strategies in place to constantly
take snapshots of the current model data and use the last known good copies when
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needed. These backups could be used offline for further analysis and could potentially
feed into training pipelines to enhance the existing models by deriving new features.

Ethics and Fairness Considerations
The general topic of fairness and ethics (along with privacy) is covered in depth in
Chapter 6. This is a broad area that can be overwhelming for system implementers to
consider. We strongly encourage you to read that chapter for a general introduction
along with some concrete suggestions.

We should consider the following specific points for serving, however:

Organizational support and transparency
When it comes to ethics and fairness while serving the ML models in produc‐
tion, we need to establish checks and balances as part of the development and
deployment framework and be transparent with both internal stakeholders and
customers about the data being collected and how it will be used.

Minimize privacy attack surface
When we process a request through the model APIs, request and response
schemas should try to avoid or at least minimize the need for user personal, dem‐
ographic information. If it’s part of the request, we need to make sure that data is
not logged anywhere while serving the predictions. Even for serving personalized
predictions, organizations that are extremely committed to ethics and privacy
often interact with serving infrastructure with short-lived user identifiers/tokens
instead of tracking the unique identifiers like user ID, device ID, and so on.

Secure endpoints
Along with data privacy, especially when dealing with PII, product/business
owners and ML/software engineers should invest more time and resources to
secure the model API endpoints even though they are accessible only within the
internal network (i.e., user requests are first processed by the application server
before calling model APIs).

Everyone’s responsibility
Fairness and ethics are a responsibility for everyone, not just ethicists, and it is
critical that implementers and users of an ML serving system be educated about
these topics. Governance of these critical issues is not just the domain of ML
engineers, and must be informed holistically by other members of the organiza‐
tion, including legal counsel, governance and risk management, operations and
budget planning, and all members of the engineering team.
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Conclusion
Serving reliably is hard. Making the models available to millions of users with milli‐
second latencies and 99.99% uptime is extremely challenging. Setting up the backend
infrastructure so the right people can be notified when something goes wrong and
then figuring out what went wrong is also hard. But we can successfully tackle that
complexity in multiple ways, including asking the right questions about your system
at the start, picking the right architecture, and paying specific attention to the APIs
you might implement.

Serving isn’t a one-time activity either, of course. Once we’re serving, we then need to
monitor and measure success (and availability) constantly. There are multiple ways to
measure the ML model and product impact over the business, including input from
key stakeholders, customers, and employees, and actual ROI as measured in revenue,
or some other organizationally relevant metric. Hints on this, and other topics in
deployment, logging, debugging, and experimentation are to be found in Chapter 9,
while there is a much more complete coverage of measuring models in Chapter 5.
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1 You can’t have observability without monitoring, but you can have the reverse—coarse-level detection
without any ability to inspect in greater detail. This is, however, not the direction of travel of the industry.

CHAPTER 9

Monitoring and Observability for Models

By Niall Murphy and Aparna Dhinakaran
Contributors/Reviewers: Ely Spears, Lina Weichbrodt, Tammy Le

Diagrams: Joel Bowman

Managing production systems is somewhere between an art and a science. Add the
complexities of ML to this hybrid discipline, and it looks less like a science and more
like an art. What we do today is very much a frontier, rather than a well-defined
space. Despite that, this chapter outlines what we know about how to monitor,
observe, and alert for ML production systems, and makes suggestions for developing
the practice within your own organization.

What Is Production Monitoring and Why Do It?
This chapter is about how to monitor systems that are doing ML, rather than using
ML to monitor systems. The latter is sometimes called AIOps; we are focusing on the
former.

With that out of the way, let’s talk about production monitoring generically, without
the complexities of ML, so we can make things easier to understand—and where
better to begin than with a definition? Monitoring, at the most basic level, provides
data about how your systems are performing; that data is made storable, accessible,
and displayable in some reasonable way. Observability is an attribute of software,
meaning that when correctly written, the emitted monitoring data—usually extended
or expanded in some way, with labeling or tagging—can be used to correctly infer the
behavior of the system.1
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Why would you care? It turns out there are lots of reasons. Most urgently, monitoring
allows you to figure out whether your systems are actually working. If you are buying
and reading this book of your own accord, you probably already understand how
important that is. No less a luminary than Andrew Clay Shafer, cofounder of the
DevOps movement, wrote, “If the systems are down, the software has no value.” If
you don’t accept this is important, or if you understand the arguments but don’t
believe them, we encourage you to read James Turnbull’s The Art of Monitoring
(2016). For the purposes of the rest of this chapter, though, we assume you under‐
stand that you need to monitor (and alert on) the state of systems, and what is up for
discussion is how best to do that.

Of course, the situation has more nuance than that. For a start, systems don’t usually
behave as a Boolean, either entirely up or entirely down; generally, they can be per‐
forming anywhere on a spectrum from superb to very badly. Monitoring obviously
needs to be able to handle this situation and represent the reality correctly.

Monitoring is hugely important in and of itself, but an offshoot of monitoring is
absolutely crucial: alerting. A useful simplification is that when things go wrong,
humans are alerted to fix them, and for the purposes of this paragraph, alerting is
therefore both defining the conditions for “things going wrong,” and being able to
reliably notify the responsible folks that something isn’t right—e.g., paging. This is a
key technique in helping to “defend the user experience.”

Less urgently, but still vital, is monitoring for long-term trend analysis, capacity
planning, and general understanding of your service envelope. You use this kind of
monitoring data to answer questions like these: Is my service cost-effective? Does it
have any unobvious performance cliffs? Is there data distribution drift? How does
service latency, for example, relate to user behavior on the weekend versus the
working week? All these questions and more cannot really be answered well without
monitoring and observability.

What Does It Look Like?
As we’ve alluded to, to do monitoring, you must have a monitoring system as well
as systems to be monitored (here, called the target systems). Today, target systems
emit metrics—a series, typically of numbers, with an identifying name—which are
then collected by the monitoring system and transformed in various ways, often via
aggregation (producing a sum or a rate across multiple instances or machines) or
decoration (adding, say, event details onto the same data). These aggregated metrics
are used for system analysis, debugging, and the alerting we mentioned previously.
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2 Note that this use of “labeled” is distinct from the use of the term “labeled data” in supervised ML. Here, the
labels are more like arbitrary key-value pairs associated with a time series.

3 Of course, you don’t get this level of detail for free. Product developers have to write code to maintain labeled
metrics and export them correctly, and you need a system capable of analysis and display. But it’s worth it.

A concrete example is a web server with a metric of the total number of requests
it received; this metric has a name—say, in this case, server.requests_total. (Of
course, it could be any request/response architecture, like an ML model!) The mon‐
itoring system will obtain these metrics, usually via push or pull, which refers to
whether the metrics get pulled from the target systems or get pushed from them.
These metrics are then collated, stored, and perhaps processed in some way, generally
as a time series. Different monitoring systems will make different choices about how
to receive, store, process, and so on, but the data is generally queryable and often
(very often) there’s a graphical way to plot the monitoring data so we can take
advantage of our visual comparison hardware (eyes, retinas, optic nerves, and so on)
to figure out what’s actually happening.

By extension, an observable system uses these foundational ideas but goes a step
further: instead of just getting a counter for the total number of requests, you get
labeled2 data for that metric, and indeed most metrics. Specifically, labeled data
means that you don’t just get a counter; you get subdivisions, or slices, of that
metric. So, for example, you don’t just have server.requests_total; you have
server.requests_total{lang=en}, which means, “For all requests made where
the client requested the page be rendered in English, what is the total number
of requests?” Of course, not just {lang=en} either—also {lang=fr}, {lang=pt},
{lang=es}, {lang=zh}, and so on. A fully observable system allows slicing and dicing
of such data on extremely fine-grained boundaries, such that it is possible to construct
queries to look at the past 12 days of queries in Romanian that resulted in a HTTP
404 return code after 1200 ms of latency.3

Monitoring in general has many subtleties, particularly around how aggregation is
done and how results are used, but it’s a reasonable high-level picture—for non-ML
system monitoring at least. When you add ML systems as target systems to this
picture, you get not just all the issues mentioned previously, but also the special
concerns of ML; Figure 9-1 may help illustrate.
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Figure 9-1. Observability layers and system requirements

The Concerns That ML Brings to Monitoring
One important concern is not necessarily the task of monitoring ML itself, but the
perception of the act of monitoring by the model development community. What do
we mean?

Well, we believe the model development community understands very well that
software has inputs and outputs, and should be observed in order to figure out what’s
going on. (The whole act of model development can be looked on as the process of
metric extraction, control, and optimization, for a start!) What is sometimes missing,
though, is awareness and engagement with what happens after a model is developed
and goes out into production. What we see as the mindset problem with monitoring
ML also partially derives from how the word is used—semantically, monitoring can
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4 Discovered is maybe not quite the right word. For more details, see the Digital Realty blog post “The Cost of
Latency” by Farhan Khan, or the 2018 Zalando study “Loading Time Matters” by Christoph Luetke Schelhowe
et al.

mean inspection activities applying to model development, or it can mean continual
observation of systems in production. In actuality, the term is used in both contexts.

To put it another way, many model developers don’t realize that exactly the same
requirements for inspectability could and should apply when a model is running
in production as they do in development. This gap is particularly true if your back‐
ground is in using metrics for optimization, but not for detection. Detection turns out
to be a hugely crucial use case, and the activity of monitoring should apply across the
whole-model lifecycle.

This is not just a question of perception, though. The reality is that ML already
struggles with explainability—particularly at the time of execution in production.
This is partially because of the nature of ML, partially a function of the way models
are developed today, partially the nature of production operation, and partially a
reflection of the fact that tools for inspectability are generally aimed just at model
development. All of these combine to make monitoring ML more difficult.

Reasons for Continual ML Observability—in Production
Observability data from your models is absolutely fundamental to business—both
tactical operations and strategic insights. We have mentioned, and much has been
written about, the negative consequences of not having monitoring and observability,
but positive consequences arise too.

One example we like to use is the connection between latency and online sales. In
2008, Amazon discovered that each additional 100 ms of latency lost 1% of sales, and
also the converse—so, the faster the better.4 Similar results have been confirmed by
Akamai Technologies, Google, Zalando, and others. We assert that without observa‐
bility, there would be no way to have discovered this effect, and certainly no way to
know for sure that you were either making it better or worse!

Ultimately, observability data is business outcome data. In the era of ML, this happily
allows you not just to detect and respond to outages, but also to understand incredi‐
bly important things that are happening to your business. Ignore it at your peril.

Problems with ML Production Monitoring
ML model development is still in its infancy. The tools are immature, conceptual
frameworks are underdeveloped, and discipline is in short supply, as everyone
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5 CI/CD is too complicated to describe in detail here but basically means delivering software in a continuous,
reliable stream. In addition, to be clear, just because we know what works under certain circumstances doesn’t
mean that the industry as a whole does it consistently—just that we have good, evidence-based reasons to
believe it.

scrambles to get some kind of model—any kind of model!—off the ground as soon as
possible and solving real problems. The pressure to ship is real and has real effects.

In particular, model development, which is inherently hard because it involves recon‐
ciling a wide array of conflicting concerns, gets harder because that urgency forces
developers and data science folks to focus on those hard problems and ignore the
wider picture. That wider picture often involves questions around monitoring and
observability.

This leads to two important observations we would make about the difference
between model development and production serving. One of these is a generic
observation about all production environments, which just happens to be particularly
complex and difficult in the ML world. The other is a specific situation about model
development that is currently broadly true but may not be so forever; nonetheless, it
is worth mentioning as a foundation to what follows.

Difficulties of Development Versus Serving
The first problem is that effectively simulating production in development is
extremely hard, even in separate environments dedicated to that task (like test,
staging, and so on.) This is not just because of the wide variety of possible serving
architectures (model pools, shared libraries, edge devices, etc., with the associated
infrastructure that you might or might not be running on) but also because in
development you often invoke prediction methods directly or with a relatively small
amount of code between you and the model for velocity reasons. Running in produc‐
tion also generally means you don’t have the ability to manipulate input, logging
level, processing, and so on, arbitrarily, leading to huge difficulties in debugging,
reproducing problematic configurations, etc. Finally—and crucially—the data you
have in testing is not necessarily distributed like the data the model encounters in
production, and as always for ML, data distribution really matters.

The second problem is a little different. In conventional software delivery, the indus‐
try has a good handle on work practices that are known to improve throughput,
reliability, and developmental velocity. The most important of these are probably the
grouped concepts of continuous integration / continuous deployment (CI/CD), unit
tests, small changes, and a collection of other techniques probably best described
in Accelerate by Nicole Forsgren et al. (IT Revolution Press, 2018).5 Unfortunately,
today we are missing this equivalent of CI/CD for model development, and cannot
yet say we have converged onto a good set of (telemetry-related, or otherwise) tools
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for model training and validation. We expect this will improve over time as existing
tools (such as MLflow and Kubeflow) gain traction, vendors incorporate more of
these concerns into their platforms, and the mindset of holistic or whole-lifecycle
monitoring gains more acceptance.

An Important Note About Skew
Skew is used broadly to describe a variety of data problems. Among common uses
of the term are biased distribution shifts in the underlying data, outliers (especially
unexpected outliers), semantic violations in the interpretation of data, and missing
feature values (especially including values missing in some features but not others).
Skew also commonly refers to a failure of correspondence between two variables or
data streams that are intended to be synchronized. Note that the way this is used in
ML systems only rarely includes the use in statistics (biased distribution shifts in the
underlying data).

The skew most likely to cause production problems is training-serving skew, which
describes any difference between the performance of your model in training and
in serving. Common causes are changes in feature definition between training and
serving, changes or gaps in the data itself, or sometimes even some kind of a feedback
loop between the algorithm and the task. Skew of this kind and other kinds is a
common cause of avoidable outages in ML systems, and all of the simple causes of it
should be targets for monitoring.

Different models and ML systems are subject to different kinds of skew. Astute
readers will therefore note a problem: the techniques for monitoring and detecting
skew are model specific (or at least specific to a particular model architecture, config‐
uration, and purpose). There’s no meaningful “just monitor all manner of skew for all
models” function that anyone knows how to do yet (though it’s certainly an intriguing
idea). In other words, we can detect a difference between training and serving, but
not know the underlying causes that difference has, or whether that difference is
meaningful. We cannot detect differences in coverage of particular datasets without
knowing what constitutes the domain for those datasets and what the expected
coverage is.

In terms of impact on monitoring best practices, this implies that the monitoring
system has to be general-purpose and flexible, but that individual model and model-
family monitoring has to be implemented by production engineers and ML engineers
working closely together. This is an area that many people are working on and is
expected to improve in the future.
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6 Indeed, we often see that modeling KPIs are actively hard to link to business KPIs, and teams can end up
doing a series of A/B tests geared not toward safe rollout, but toward understanding the degree of coupling
between online business metrics and offline modeling metrics.

A Mindset Change Is Required
Though we have many technical challenges today, the organizational and cultural
ones that act against holistic monitoring are arguably the most relevant ones here. In
particular, model developers don’t generally think in terms of detection of issues post-
deployment, but instead think in terms of modeling KPI performance pre-deploy‐
ment—and modeling KPIs are not necessarily directly connected to business KPIs!6

This obviously presents a problem for whole-lifecycle monitoring, since both pre-
and post-deployment turn out to be important, and like successful software generally,
post-deployment often lasts longer than you think. Teams focused on developing and
deploying models quickly are often impatient about rigorous delivery frameworks, as
though these delivery frameworks will prevent them from organizing training and
serving in whatever way is most convenient for them. Which, of course, they do—to
some extent. But they do so by providing a set of monitoring and management
guarantees in production that would otherwise be difficult to achieve and deployed
on only an ad hoc basis.

If we accept this framing, the most important thing we should do is try to have a
reasonable, flexible solution for maintaining the broadest useful picture of model
behavior throughout its entire lifecycle, and make it adaptable for your own situation.
Since the special case tools that today are used for model development (TensorBoard,
Weights & Biases, and so on) don’t usually naturally translate into production itself,
the particular monitoring system in use, and so on, at the moment we will necessarily
have to make some of this up ourselves. Given that, the overall goal for this chapter is
to recommend a whole-lifecycle approach to monitoring, and in particular, suggest a
default set of things to monitor other than the specific business metrics the model is
intended to improve, since they are already well understood.

Best Practices for ML Model Monitoring
Let’s start off with a few framing assumptions: for the purposes of this chapter, model
development is generally done in a loop. We select data, train on it, build a model,
do basic testing/validation, tweak, retrain, eventually release to production, learn how
the model behaves, and begin the cycle again with ideas for improvement.

Monitoring in serving can be divided into model, data, and service (also known as
infrastructure). Separation like this is useful because we don’t have to handle every
detail at every level, though we acknowledge that some crossover exists.
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Explainability—understanding what led the model to classify as it did, predict as it
did, and so on—is a huge topic and likely to get more and more important as ML
plays a larger role in more industries. A detailed explanation of explainability and an
overview of best practices is beyond the scope of this chapter, and indeed this book. A
handful of the ethical principles are addressed in Chapter 6, and most readers should
review that.

From the more practical perspective of model monitoring only, however, explainabil‐
ity is important to understand in preproduction and, increasingly, production phases.
The particularities of explainability vary according to model type, phase, business
strategies, and so on. But the in-production cases are usually where ML is being used
in safety-critical or socially significant ways, and where there might be a legal or
ethical interest in understanding what led to the outcome. The primary objective here
is to find as many ways as possible to “smooth out” the difference between model
development and serving.

Generic Pre-serving Model Recommendations
We talk about this more in Chapter 3, but from a monitoring point of view, it’s
most important to keep in mind the business goal attached to the development of
the model, and connect its KPIs to exported metrics for monitoring purposes. A
model for which you have no business insight but plenty of infrastructural insight
would be close to useless, and similarly, a model that you understood to work well
in development but for which you had no insight into production behavior would
arguably be potentially more harmful than useless.

The most important recommendation is that your business KPIs should correlate
with model metrics; you should be able to trace these continuously from development
to production. For example, if you are a ride-hailing app company, and you are
predicting estimated time of arrival (ETA) for the ride, pickup location is something
you’ll want clearly available during the whole period. When monitoring for data
integrity, the most important features of the model should therefore be given high
priority.

Explainability and monitoring
As we’ve mentioned, explainability is a big area, but in particular for monitoring
it presents some problems. Like debugging or observability in general, full explaina‐
bility generally involves more resources (and is slower, more costly, and so on) in
production than in development. Yet you often want explainability most urgently in a
production context.

People responsible for ML models want explainability for a few reasons: establishing
which features should be prioritized for data integrity, investigating a specific predic‐
tion or specific slices of predictions, and responding to business requirements for
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7 We see an industry trend toward SHAP as the gold standard for model interpretability; LIME is also popular.
See “Idea Behind LIME and SHAP” by Ashutosh Nayak for more details on SHAP and LIME.

explainability generally. Since it’s so expensive, and since business people may not
have all the background required to understand it, being effective here often amounts
to having a conversation with them about what they really care about. Often you can
respond to their concerns (and potentially even build special monitoring solutions)
without having to get into highly specific modeling details, which is a conversation
that can sometimes distract from the essentials.

However, in some cases explainability is essential for troubleshooting. Let’s take a
lending use case: say a prediction is rejected because the request has a unique value
for one feature that is not commonly seen—in this case, an application date of
February 29. Application date is typically not one of the top 10 most important
features across all of our predictions, but if for some reason our training dataset has
only a few applications on February 29 and those end up being poor risks in the
intervening years, we can imagine a model that uses the application date to heavily
influence the decision to reject.

In such cases, explainability can surface what drove that individual prediction’s
output. This could be implemented via regularly logged summaries of predictions,
exposing internal mechanisms via LIME and SHAP (essentially surrogate or duplicate
models that use a conceptually analogous approach to differential cryptanalysis)7, or
another more customized approach. You generally find such explanations are not
just used by model developers, but also risk and compliance teams, and can help
nontechnical users understand systematic issues with models. Unfortunately, this is
mostly too expensive to do in production.

Training and Retraining
In many ways, the training phase is the easiest to handle—from a classic monitoring
point of view, anyway. The most important thing for monitoring training is keeping
a holistic view, with the most important metric being how long it takes from starting
training to producing a (hopefully working) model.

Having said that, other factors are important too—in particular, understanding when
to retrain—i.e., to build a new model, in the hope or expectation that it might fix a
problem for us. Though model rollback is the most common tactic used to resolve
production problems, from time to time retraining is used—in this context, you can
think of it as being like roll-forward for models: i.e., replacing what’s in production
with the latest version of everything.

Retraining is generally used when rollback hasn’t worked or can’t work (see “Fall‐
backs in validation” on page 203), or if roll-forward is easier for your infrastructure
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8 In the annals of reliability literature, roll-forward is generally considered quite risky and to be seriously
considered only when there is genuinely no possibility of a safe and clean rollback. Change is change, and
even going back to an older version of a model represents some risk, but doing so may tend to minimize that
risk by reducing the number of untested changes.

9 Be warned that sometimes if you press the retraining button, things get worse. You could press it at a
time when a radically different model might be built than only a short time ago and thereby produce
something equally broken. Think of the difference between training over December 24 and December 26 in
the Anglosphere, for example. There’s also no guarantee the new version is better, so unless your validation
process is significantly automated, you won’t just pay the CPU cost; you’ll pay staff time costs as well.

10 Andrej Karpathy’s blog on the software development lifecycle (SDLC) in an ML context and the Google Cloud
pages on continuous ML are also very much worth reading in this context.

than rollback.8 Equally, retraining has drawbacks in two circumstances. In the first,
retraining would execute over the exact same data you used to train the old model (in
which case, you would broadly expect the same behavior, since it’s the same input).
In the second, retraining takes so long that you can’t use it to tactically resolve an
outage. (This is one reason you might want to just run retraining automatically and
periodically, if it’s feasible for you to spend resources on this.)

For the first issue, you can sometimes “hack” the situation a little by changing the
data you’re training over—either by using an entirely new corpus, replacing some bad
data, adding missing data, and so on. (Of course, significant variables for the training
process here include changing the range of data we are training over, and whether or
not we change any weightings, but hopefully deciding those is relatively quick.)9

Training is important in a monitoring context not only because of retraining, but also
because this is where most developers establish their baselines, and these are used
widely thereafter as a comparison point.10

Concrete recommendations
Next, we outline a list of things to monitor to get base-level coverage. Things that
we consider minimal and mandatory, we highlight in italics; if you have to start
somewhere, start there. Of course, you could put a lot of effort into monitoring, and
perhaps in some cases it’s worth it, but in some it’s not. So we recommend you think
carefully about the cost/benefit trade-off before implementing all of the following
checks. (If you are looking for a more advanced guide to deciding what’s important,
we recommend you look at writing an SLO for your training pipelines and models—
see “SLOs in ML monitoring” on page 216 for more details.)
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• Input data•
— How large is the input dataset compared to the expected size? Compare the—

training dataset to either the last time we trained this model or use another
exogenous metric that can indicate rough size. If the dataset has shrunk by
50% unexpectedly, that’s usually a bad sign.

— Are you comparing raw input data and feature data? (Some problems emerge—
only when combining fields into features.)

— What are the youngest and oldest pieces of input data? Do they conform to—
expectations? For extra credit, start to look at the histogram of the distribution
of ages. In a distributed training situation, sometimes there can be a small
number of very old pieces of data while everything else has been processed
cleanly and effectively.

— What is the cardinality (in this case, total number of elements or examples),—
and how is the data distributed? Is the distribution very different from the
expected distribution—either compared to the previous time we trained on
this data, or compared to other generated expected distributions?

— In a batch-processing scenario, can you enumerate the data and ensure it’s—
finalized? (Can you guarantee that all of the events from a particular day—
say, yesterday—have arrived and include all relevant fields? Do you have any
outliers from the day before that, or from today?)

— In a streaming processing scenario, what is the rate of arrival of incoming data?—
Do you process on receipt of each “bundle” or after a fixed size has been
collected (in which case, you should track how often processing is invoked)?

— If access to the data is mediated, what are the rates of access? Are there a large—
number of failures (particularly authentication-related ones)?

— If the data is copied from somewhere else to go into, say, a feature store, and—
the model is built from a feature store, does that copying happen correctly?

• Processing•
— How many processing jobs are running? When did they last run? Did they—

complete by the time they should have? What was the rate of restarts and the
successful job completion rate? Is there a backlog of unprocessed units? What is
the distribution, in age, of the unprocessed units?

— What is the processing rate (measured, say, in input data elements processed—
per second?) What is the 50th percentile, 90th percentile, and 99th percentile of
processing rate? (Pay particular attention to long-running shards—i.e., if you
split your work across many processing jobs, you often see one of them run‐
ning long—see the previous comment about input distributions.) How does
that compare to the previous iteration? Or for more accurate comparisons,
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11 For example, using week-on-week to avoid comparing (say) a Saturday to a Friday, which often have very
different shopping patterns. In general, being aware of these patterns is useful for monitoring work.

how do you ensure that seasonality effects are properly accounted for in
defining the previous iteration?11

— How much, in total, of the three axes of CPU, memory, and I/O have been—
consumed to produce the model? (This can be nontrivial to determine, but is
crucial for figuring out bottlenecks—in particular, if you add more of any
resource, would you know if your system would get faster?)

• Holistic view•
— How long did the entire run—from marshaling input data to producing the—

model—take, both in absolute duration and comparative duration?
— What is the size of the output model? If there is more than one file, is every file—

present that should be?
— Can the model be successfully loaded and make simple predictions?—
— For those who do testing in a separate environment, does the model pass the—

testing process?
— What is the time to get the model into production and serving queries?—
— For those who do testing in production, does the model pass exposure to users?—

Are the business or use metrics that you track in production affected in an
unexpected way by the new model?

— Do you understand what the largest contribution to getting models into produc‐—
tion is? Is it manual action or automatic action? (You might have to add
decoration or annotation information to achieve this: for example, a way to
annotate a particular period as being a time of heavy network load.)

Finally, we note that some of these suggestions might also usefully apply to subcom‐
ponents of your training pipeline. It’s not uncommon to have, for example, various
data landing zones that have some very simple checks applied to them before they
get copied for fuller processing elsewhere (think yarn supplier delivery manifests,
for example, often sent over relatively inflexible electronic fund transfer, or EFT,
processes). Being aware if the size of those dropped by 50% would be useful. Similar
arguments might apply to chains of feature preprocessing prior to feature-store
assumption, and so on. We can’t describe every possible architecture in advance here,
but we can say that business risk analysis can help you to understand where best to
place your scarce resources.
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12 Chapter 5 covers this topic in more detail, but it is necessary to repeat some of the elements, and emphasize a
slightly different set, here.

13 Of course, that raises the possibility that, given performance may be a multidimensional assessment, there
might be no clear winner. In that case, there are good arguments for doing two opposite things: (1) preferring
the model currently running on the basis that it changes the least and is well understood, and (2) preferring a
new model on the basis that something built over more recent data is probably going to survive change better
and will be less painful to transition from. Only you can judge which is best for your circumstances.

Model Validation (Before Rollout)
Models are generally designed to achieve a certain business impact, also known as
improving a metric. Business validation can therefore be understood as attempting to
understand the business impact of a model,12 for example, looking at how it affects
profit and loss (also sometimes known as the profit/loss curve), or using a confusion
matrix, which tries to understand where the model classified no and the answer
should have been yes, and so on. Of course, we always need to beware of user
behavior being noisy, but the primary goal is to find out whether the model improves
a certain metric from a baseline.

The secondary goal is trying to figure out whether the new model is better than what
we already have. To do that, we not only have to test versus historical data, which we
are probably doing anyway, but also compare two models against each other.13 We can
choose from at least two good approaches:

• Test in preproduction environments (sometimes called a sandbox), and run the•
models either in parallel or serially, depending on your capacity, to compare
behaviors.

• Test in production, with the model getting a small subset of real user traffic•
(typically, between 1% and 5%), sometimes called a canary test.

The second approach also has the good effect of exposing any problem with the
model reacting to user traffic before a full rollout. However, this does require you to
have some way of engineering traffic such that a particular version gets only a subset
of traffic—not all infrastructure supports this feature. But if you have it, it’s really
good for allowing safe transitions from old to new models, and overlaps nicely with
A/B testing. (General model updates can also fit well within such a framework, and
indeed contemporary software deployment makes a lot of use of this approach.)

A hybrid approach is to send some data to the model locally, and the same data
to the model running in production (though with this approach, the local model is
not enabled to take full production traffic; it is just taking your test traffic). This
helps expose feature code differences between modeling and serving, configuration
differences, and so on. Finally, some folks send production traffic to a model, but
don’t serve the results to end users, which tests many components of the serving path
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without exposing users to risk. This is called shadowing, and provides another place
on the spectrum to balance correctness and risk.

Fallbacks in validation
For all kinds of reasons, it’s highly advisable to have a fallback plan, which is a set of
steps you take if the new model fails, the rollout fails, or even the old model is found
to have some weird behavior in a particular subset of circumstances. There are two
main approaches (as seen in “Emergency Response Must Be Done in Real Time” on
page 235):

Use an older version of the model (roll back)
This implies it’s a good idea to keep the actual binaries of these around, versioned
correctly, as well as monitoring the actual versions in production, since stressing
your training infrastructure to build a model from old data at a time of produc‐
tion outage is generally the opposite of a good idea.

Fall back to a simpler algorithmic or even hardcoded approach
For example, when attempting to supply ranked recommendations for product
purchases, instead of broken recommendations, just display the top 10 most
popular products on the site—though it won’t be right for anyone, it won’t be too
wrong either (in most cases)!

Be very careful in your rollback, since many subtle problems wait in the long grass,
waiting to strike: schema changes, format changes, or changes in semantics—whereby
a crucial database, data source, or feature store format changes between releases—are
all examples of areas that are easy to overlook in rollbacks. This can sometimes
make it effectively impossible or impractical to do so unless the whole suite of
dependencies is rebuilt, but might also make it hard to roll forward to a new version
unless the actual error is fully understood. In these situations, algorithmic fallbacks
can be life-saving. However, algorithmic fallbacks also can themselves fail because of
categorical errors.

A nuance here is that even if the schema stays the same, feature transformations
applied to one version of the model may not be the same as what’s applied to another
version. For example, how to handle a missing value for a ride-hailing app pickup
location in one version of the model might be to simply default to where the rider was
last seen, and in another version of the model might be the closest previously saved
pickup location (e.g. home, office, etc.). These differences in the way the features are
transformed might differ among versions and would also complicate rollback. Even
worse would be if you roll back to one feature transformation on one “side” of the
system and stay with the new one on the other “side.”
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14 IaC is the act of managing computer infrastructure as if it was code—which is to say, with statements in files,
version control, release processes, and so on.

15 For those with a search engine background, by way of an example, if you search for a particular term,
precision indicates the number of documents you retrieve that contain the term in a relevant way, divided by
the total number of documents retrieved, and recall indicates the number of relevant documents retrieved,
divided by the total number of relevant documents. So high precision means you don’t give the user irrelevant
documents, and high recall means you give them almost every relevant document. The converses are, alas,
both easy to intuit the definition of, and easy to generate.

Call to action
We don’t yet have anything like the CI/CD workflow used in the infrastructure-as-
code (IaC) community today that is commonly available for model development.14

Different companies and even different teams within the same company could solve
the problems differently. That doesn’t mean you can’t do checks, or can’t do them
automatically—homegrown approaches have, of course, some utility—but today’s
reality involves manual, peer-based review of both code and data, and detailed valida‐
tion requiring PhDs in statistics.

For what it’s worth, this situation imposes serious friction for ML development as
it stands. The industry actively needs to work toward making as much of this as
automatic as possible, and this work is too important to be left to the platforms. We
therefore call on the industry to move toward a state where IaC approaches are used
as widely in ML development as CI/CD and IaC enjoy today in product development.
Even if we don’t get that far, being in a situation where everything after manual
validation moves the training artifacts safely and automatically to production would
be a significant improvement than what we have on average across industry today.

Concrete recommendations
Commonly used numerical KPIs are measured to assess an ML model’s performance.
These are also covered in some detail and with a deeper theoretical foundation
in Chapter 5, and with specific attention to serving use cases in Chapter 8. We
summarize these KPIs here for continuity and ease of access:

Accuracy
The fraction of predictions for which the model is correct.

Precision
The ratio of true positives to total positives.

Recall
The ratio of predicted positives to total positives.15
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Precision and recall (PR) curve
The space of tradeoffs between precision and recall at different decision thresh‐
olds.

Log loss
See Chapter 5 for more detail.

ROC curve and AUC
A threshold-independent measure of model quality.

Many other possible mathematical measures could be used, some of which you might
recognize from early statistics classes (e.g., p-values and coefficient effect sizes) and
some of which are a little more involved (e.g., posterior simulations). On the whole,
though, if you understand the preceding list in terms of your model, and understand
your output distribution shape, you have a very good handle on what’s going on.

Serving
Monitoring ML models while they are serving in production has all of the difficulties
of observing things in production, combined with the numerous challenges of figur‐
ing out why things are happening that are peculiar to ML. Nonetheless, we can start
with a set of simple questions:

• What are good metrics to measure my model in serving? (In some sense, you•
want the more relevant ones; arbitrary metrics have a habit of growing without
limit until signal/noise is degraded.)

• Is my model performing as expected? If it’s not performing as well, why, and how•
can I resolve the issue?

To choose good metrics for measuring model performance, we need to properly
understand how a model can fail. Three components are needed to make a model
work successfully:

Model
The model making predictions.

Data
The data that is flowing in and out of the model. This includes the features that
the model uses to make a prediction and the prediction itself.

Service
The service that actually renders the model. This typically involves the deploy‐
ment of the model and serving of inferences—infrastructure, in the broadest
sense.
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16 Much more detail is available on RMSE in many other places; the C3 AI Glossary page is probably a good
place to start.

17 The engineering challenge here is how to join these sets of data, which can often be done with session IDs,
user journey tokens, or something similar.

Each of these three components needs to be working as expected in order for the
model to be successful. A failure in any can have an impact on the overall business
KPIs that the model was designed to improve. Therefore, we need to measure all of
these to have a complete picture. In the next sections, we examine them in more
detail.

Model
Starting with the model itself, we again note that measuring model performance in
serving is a lot trickier than measuring performance prior to serving. Given those
difficulties, we prefer to use the same metrics to evaluate the model in serving as we
do in training/validation, since that will give us more confidence that we’re actually
measuring in some sense “the same thing.” Of course, doing this requires being able
to match the prediction with the corresponding observed reality.

For example, let’s assume a ride-hailing company has a model predicting the ETA of
a car for a customer. While evaluating this model in validation, you care a lot about
minimizing the error (usually referred to as root mean squared error, or RMSE16) so
that the model’s prediction is close to the actual ETA: in this context, it turns out that
customers tend to get more upset if you overpromise and underdeliver than the other
way around. So to calculate this same metric in a production environment, there
must be some process that can reconcile the predicted ETA with the actual ETA (i.e.,
calculate the error).

In practice, a few scenarios describe the delay with which the real results (known as
actuals) arrive, and how we cope with that.17

Case 1: Real-time actuals.    The ideal ML deployment scenario—and often the only one
taught in the classroom—occurs when you get fast actionable and fast performance
information back on the model as soon as you deploy your model to production.

Many industries are lucky enough to have this ideal scenario. Probably the most
famous is digital advertising: a model attempts to predict which ad a consumer is
most likely to engage with. Almost immediately after the prediction is made, the
ground truth—whether they clicked or not—is determined. A similar example is food
delivery; as soon as the pizza has arrived at the hungry customer’s house, you have
real measurements you can compare your model predictions with, and pizza delivery
as a business has a strong time limit baked into it (as well as other ingredients)—
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18 Though YarnIt has been experimenting with drop-ship capabilities for delivering its products, the feedback
loop is still limited by the physical delivery cycle and product review time.

19 The best model metric to use primarily depends on the type of model and the distribution of the data it’s
predicting over. This should typically match up with the metrics used in training/validation.

take too long, and the customer typically no longer wants it.18 Ultimately, a strong
detection KPI is what you want, if you can get it.

The key thing this quick feedback loop enables is the ability to measure the effective‐
ness of your models essentially instantaneously (or at least very quickly); of course,
once you have this latent ground truth linked back to your prediction event, no
matter how long it took to get it, model performance metrics can easily be calculated
and tracked.19 Tracking such metrics on a regular cadence allows you to make certain
that performance has not degraded drastically from when a model was trained, or
when it was initially promoted to production.

However, many real-world environments change the way you get access to ground-
truth data, as well as the tools you have at your disposal to monitor your models.

Case 2: Delayed actuals.    In this case, you don’t get the benefit of the fast real-time
feedback outlined previously. Indeed, these kinds of situations are arguably more
common in business generally than case 1, and certainly a lot more awkward to
deal with. Imagine you are trying to predict the likelihood of physical infrastructure
failing—say, bridges collapsing—or use ML to perform predictions in the real estate
market. Both of these scenarios have durations that could plausibly be measured in
years, or even decades. This makes it tricky to ensure that a model developed to help
you make higher-quality decisions is behaving as expected.

This delay in receiving ground truth, as well as being very long, might also be
unbounded. Take, for example, a fintech company trying to classify which credit card
transactions are fraudulent. You likely won’t know whether a transaction is truly
fraudulent until you get a customer card loss report or charge dispute. This can
happen a couple of days, weeks, or months after the transaction cleared—or in the
scenario where the transaction goes undetected by the customer, might never happen.

Ultimately, you can still make the first approach work if you get “enough” semi-
real-time data, the data arrives reliably enough, and so on, but if you can’t make
that approach work, teams may need to turn to proxy metrics. Proxy metrics are
alternative signals that are correlated with the ground truth that you’re trying to
approximate, but are selected specifically because they arrive more quickly.

In the case of bridge failures, we might look at results of bridge inspections, mainte‐
nance schedules, whether a bridge is in an area prone to flooding, and the age of
a bridge. For real-estate purchase-price predictions, a common technique is to look
at prices for similar houses, but with as few components changed as possible: for
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example, the same number of bedrooms and bathrooms but in a different area, or
different number of bedrooms but in the same area, and so on. For construction
timescales of months or years, even a messy composite proxy like this can be better
than nothing.

Ultimately, proxy metrics serve as a powerful tool in the face of delayed ground truth
since, if you can’t get a strongly correlated metric in real time, you can at least get
a more weakly correlated one; often that’s good enough. Don’t forget the mathemat‐
ical requirement that your proxy metric has statistical significance, however—and
proxy metrics may even change relevance over time, so they need to be continually
reevaluated.

Case 3: Biased actuals.    One important thing to note is that not all ground truth is
created equal. For example, if we are a fintech company looking at creditworthiness
in loan contexts, the central problem with predictions is that declining a loan means
you no longer have any information about whether the applicant could have paid
you back. In other words, only the people you decide to give a loan to will result in
outcomes that you can use to train future models on—a kind of selection bias that
could allow bias of other kinds to creep in. As a result, we will never know whether
someone the model predicted will default could have actually paid the loan back in
full. As described more fully in Chapter 6, it is therefore critical to assess our data for
potential biases, blindspots, and areas of under-representation.

Case 4: No/few actuals.    In some ML applications, getting back actuals (responses) in a
reasonable time window is just not possible. This could be for a variety of reasons,
including these:

• Manual intervention is required to verify the model’s predictions.•
• There is no way to attribute the response to the prediction.•
• The time window of getting actuals is so delayed it cannot meaningfully inform•

the modeler that the model’s performance should be looked at.

For example, many image-classification applications require a human in the loop to
manually verify that the images were classified correctly. This might require sampling
so that only a valuable segment of the predictions is manually verified to improve the
model’s future training dataset.

So what does a team do if it doesn’t get back actuals? In these scenarios, it’s not
uncommon for ML teams to once again use proxy metrics to give signals of model
performance. A weaker correlation may be better than nothing in these extreme
cases. It is also common while testing new versions of models in production to A/B
test models and compare their impact on product metrics. Monitoring data of the
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model becomes even more important to know if the model has deviated from what is
expected.

Other approaches.    Quite apart from how a model might handle the relationship with
actuals, it is possible to use generic measurements of the behavior of a model that can
be useful for figuring out whether things have gone truly awry. Our top selection here
is the share of “useless” responses—i.e., empty, incomplete, or with subpar fallback—
versus “good enough” responses, though another critical one is our old friend, data
distribution.

Troubleshooting model performance metrics.    Let’s assume that model performance met‐
rics can be calculated. Inevitably, at some point your model will not meet perfor‐
mance expectations. The hard question to answer is why. The most common causes
are typically undersampling in training data, drift, and data integrity issues impacting
the quality of data the model uses to make predictions. A best practice is to look
beyond averages and investigate various slices of predictions, i.e., a specific subseg‐
ment of predictions, such as everyone in California.

Imagine that your model is predicting likelihood of fraud. You expect the volume
of false negatives (your model missed catching a real fraud transaction) to be less
than 0.01%. Let’s say you suddenly see false negatives jump to 2%. A natural way
to proceed is to see whether this behavior is localized in any particular region or
merchant. By doing so, you can surface where the missed classifications happen, and
what slices of data to upsample when retraining the model. Of course, understanding
the worst-performing slices of the model can provide feedback to model builders for
ways to improve model performance.

Data
A key component of ML monitoring is monitoring the inputs and outputs of the
model. As features are added or dropped, monitoring must be adapted to the schema
of the model. We have two common ways to monitor data—drift detection and data
quality checks. Drift is better for catching slow changes to the distribution of the data,
while data quality checks are better for catching sudden, large changes in the data.

Drift.    Drift measures change in distribution over time. Models do not perform
equally well on every possible input: they are highly dependent on the data they were
trained on, perform well when they see data that resembles that, and perform less
well when they don’t. Especially in hyper-growth businesses where data is constantly
evolving, accounting for drift is important to ensure that your models stay relevant.
As a result, measuring the distribution of your data in various dimensions, if only via
histogram-style methods, is crucial to understanding what’s going on in production.
Some models are resilient to minor changes in input distributions, but accepting
infinite resilience does not exist; at some point data distributions will stray far from
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what the model saw in training, and performance on the task at hand will suffer. This
kind of drift is known as feature drift, or data drift. Conversely, when model outputs
deviate from the established baseline, this is known as model drift, or prediction drift.

It would be great if the only things that could change were the inputs to your model,
but unfortunately, that’s not the case. Assuming your model is deterministic, and
nothing in your feature pipelines has changed, it should give the same results if it sees
the same inputs.

While this is reassuring, what would happen if the distribution of the correct answers,
the actuals, change? Even if your model is making the same predictions as yesterday,
it can make mistakes today! This drift in actuals can cause a regression in your
model’s performance and is commonly referred to as concept drift.

Measuring drift.    Understanding the differences in two distributions is important, but
is a sophisticated topic that we cannot go into in detail at this point. So if this material
is foreign to you, don’t fret. Just either use it as it is, or go look things up and learn
more. (Either way, you’ll probably end up coming across some of these terms if you
engage with data distributions at all, never mind actively monitoring them.)

As we talked about previously, we measure drift by comparing the distributions of
the inputs, outputs, and actuals between two distributions. The two distributions
are typically the production data and the baseline distribution. Commonly used
baseline distributions are training datasets, test datasets, or a prior window of time in
production. But how do you quantify the distance between these distributions?

Several ways to do this are popular. The population stability index (PSI), commonly
used across banking and fintechs, relies on bucketizing data for one metric, calculat‐
ing the percentages residing in the buckets for each distribution, and comparing the
log of the divided percentages. This detects shifts within buckets or between buckets.
The Kullback-Leibler divergence (KL divergence) is similar to PSI, but asymmetric so
it can detect distribution order switching. The Wasserstein distance (also known as
earth mover’s distance) calculates the amount of work required to move one distribu‐
tion over to another, which is useful for recognizing the amount of shift between
buckets—i.e., if things spill from one bucket to the next, the Wasserstein score will
be lower than if a more radical jump occurs from one end of the distribution to the
other far end.

While each of these distribution distance measures differ in the way they compute
distance, they are all doing the same thing: providing a way to quantify how different
two distributions are. Especially when actuals are not available, drift is used in the
real world to identify changes in model predictions, features, and actuals.

Troubleshooting drift.    In many ML use cases where performance metrics cannot be
calculated directly, drift often becomes the primary way to monitor changes in model
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predictions. When examining why predictions have started the drift, we usually start
with looking at which inputs have also drifted, and we can couple feature drift and
feature importance together to determine which features might be more strongly
correlated with the change. In turn, that helps us figure out which features might
need to be resampled from baseline or could potentially need a data quality fix.

Data quality
While drift is focused on slow failures, data quality monitoring for models is focused
on the hard failures. Models rely on the input features coming in to make a predic‐
tion, and these input features can come from a variety of data sources. Different types
of data can be monitored for data quality issues—categorical fields, numerical fields,
as well as unstructured data types such as embeddings, and so on. Here, we will dive
into common strategies for monitoring structured categorical and numerical data.

Categorical data.    Categorical data is a stream of selections of a single value from
a limited but larger collection of values. Think of categories like the type of pet
someone owns: dog, cat, bird, and so on. You might not think much can go wrong
here, but a sudden shift in the distribution of categories is always possible, either
because of user behavior (this year’s hot Christmas pet is, for example, reindeer) or
other failures. Let’s say, for example, your hypothetical model predicting which pet
food to buy for your pet supply store sees data suggesting that people own only cats
now. This might cause your model to purchase only cat food, and all your potential
customers with dogs will have to go to the pet supply store down the street instead.

In addition to a sudden cardinality shift in your categorical data—i.e., literally how
many are counted in each category—your data stream might start returning values
that are not valid for the category. This is, quite simply, a bug in your data stream, and
a violation of the contract (semantic expectations) you have set up between the data
and the model. This could happen for a variety of reasons: your data source being
unreliable, your data processing code going awry, an upstream schema change, etc.
At this point, whatever comes out of your model is undefined behavior, and you need
to make sure to protect yourself against type mismatches like this in categorical data
streams.

Examples might include the following:

• You were expecting a string for a feature and suddenly received floats.•
• You are case-sensitive for a feature (i.e., state inputs) and were expecting lower‐•

case values, but are now receiving uppercase values (e.g., ca versus CA).
• You are receiving data from a third-party vendor, and the order of their schema•

has an off-by-one error. You are now seeing each feature receive another feature’s
values.
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20 This strengthens the argument for your application keeping distribution state, or at least bucket counters.
Other techniques for robustness actually use dropping data in order to improve robustness (which is really a
synonym for avoiding overfitting).

An unfortunately common—and tricky-to-handle—situation is missing data. This
can arise for any number of reasons to do with infrastructure, application, storage,
and network failures, or simple bugs. The real question is how to handle it. In a
training context, sometimes just discarding the row will allow things to proceed and
not be too bad; in a production context, you can throw an error (but not a fatal
one; otherwise, that turns an intermittently flaky storage service into fleet-wide death,
which is not to be recommended). While these techniques help you compensate for
this problem, it’s not really a sustainable solution: if you have hundreds, thousands, or
tens of thousands of data streams used to compute one feature vector for your model,
the chance that one of these streams is missing can be very high!

Though this is more to do with robustness than monitoring, it is
possible to compensate for missing values in categorical data in a
number of ways, a process commonly referred to as imputation.
You could choose the most common category that you have histor‐
ically seen in your data,20 or you could use the values that are
present to predict what this missing value likely is. The complexity
of your solution to this problem is entirely up to your application
scenario, but it’s important to know that no solution is perfect.

Numerical data.    A numerical data stream is also pretty self-explanatory. Numerical
data is data generally represented by floats (though sometimes integers), such as the
amount of money in your bank account, or the temperature in Fahrenheit or Celsius.

To start off our analysis of what can go wrong with numerical streams, one thing you
sometimes see is an outlier, a value that exists far out of the range of historical values.
Outliers are potentially dangerous to your model, as they could make your model
mispredict in spectacular fashion.

Type mismatch can also affect numerical data. It’s possible that a particular data
stream where you’re expecting a temperature reading instead gives you (say) a cate‐
gorical data point, and you have to handle this appropriately. It’s possible that the
default behavior may be to cast this categorical value to a number which, though now
valid, has entirely lost its semantic meaning and is now an error in your data that is
incredibly hard to track down. Another possibility is something that maybe doesn’t
change type but changes semantics: maybe you’re tracking a total counter (with some
arbitrarily large or small wrap), and it suddenly gets changed to a delta. Depending
on the data, of course, this might go undetected for quite a while!
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Lastly, just as with categorical data, numerical data also suffers from the same missing
data problems, but the ordering and span implied by a numerical sequence gives us
more options for imputation compared to the pure categorical situation. For example,
we can take an average, median, or other aggregate distribution metric to impute a
missing numeric value such as yarn weight (in grams); see Figure 9-2.

Figure 9-2. Ways to handle bad production data

Measuring data quality.    It’s not surprising to ML practitioners today that many models
rely on very large numbers of features to perform their task. With training set sizes
exploding into the hundreds of millions and even billions, models with feature vector
lengths in the tens and hundreds of thousands are not uncommon.

This leads us to a major challenge that practitioners face today. To support these
incredibly large feature vectors, teams have poured larger and larger data streams into
feature generation. The reality is that this data schema will inevitably change often
as the team experiments to improve the model. It’s common to add a feature, drop
a feature, or change how it is computed/processed, and platforms such as feature
stores are becoming widespread for tackling precisely this management overhead.
Concretely, here are the most important checks to do across your features:

• Categorical data•
— Cardinality: Has the number of unique values changed?—
— Missing values: Is this feature missing data?—
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— Type mismatch: Has the data type changed?—
— Volume of data: Has the volume of data seen for this feature changed?—

• Numerical data•
— Out-of-range violations: Has the value gone outside an appropriate range?—
— Missing values: Is this feature missing data?—
— Type mismatch: Has the data type changed?—
— Moving averages: Have the feature values been increasing/decreasing?—

Service
For an ML system to be successful, you need to understand not just the data going
in and out of the ML system, and the performance of the model itself, but the overall
service performance in rendering or serving the model—making its predictions or
classifications available. Even if the model performance improves business outcomes
and data integrity is maintained, but it takes several minutes for a single prediction,
it might not be performant enough to be deployed in a real-time serving system.
Similar to other software services deployed to production, the service deploying the
model into production and serving the model’s inferences needs to be monitored.

Numerous options exist for serving a model into production: deploying your own
APIs/microservices, using an open source framework for model serving (TensorFlow
serving, PyTorch serving, Kubeflow serving, and so on), or using a third-party
service. Regardless of what is used for model serving, it is important (especially
in real-time services) to monitor the prediction latency of the service because the
expected prediction should happen immediately after the request is sent. There are
two ways to do this:

Model level
Reduce the time it takes for the model to make a prediction.

Serving level
Reduce the time the system takes to service the prediction when it receives
the request. This is not just about the model, but also gathering the input
features (sometimes precomputing or caching them), and quickly catching the
predictions to serve.

Optimizing performance of the model.    To optimize the model for lower prediction
latencies, the best approach is to reduce the complexity of the model. Some exam‐
ples of reducing complexity could be reducing the number of layers in a neural
network, reducing levels in decision trees, or reducing any irrelevant/unused part of
the model. Architecture makes a difference too: for example, bidirectional encoder
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representations for transformers (BERT) is slower than feed-forward approaches, and
tree-based models are faster than deep learning.

In some cases, this might be a direct trade-off to the model efficacy. For example, if
there are more levels in a decision tree, more-complex relationships can be captured
from the data and therefore increase the overall effectiveness of the model. However,
fewer levels in a decision tree can reduce prediction latency. Balancing the efficacy
of the model (accuracy, precision, AUC, and so on) with its required operational
constraints is important to strive for in any model to be deployed. This becomes
especially relevant for models that are embedded on mobile or devices.

Optimizing performance of the service.    To optimize service performance, here are sug‐
gestions for areas you could monitor and improve.

First, let’s consider input feature lookup. Before the model can even make a prediction,
all of the input features must be gathered, and this is often accomplished by the
service layer of the ML system. Some features will be passed in by the caller, while
others might be collected from a datastore or calculated in real time. For example,
a model predicting the likelihood of a customer responding to an ad might take in
the historical purchase information of this customer. The customer wouldn’t provide
this when they view the page themselves, but the model service would query a feature
store or a real-time database to fetch this information. Gathering input features can
generally be classified into two groups:

Static features
Features that are less likely to change quickly and can be stored or calculated
ahead of time. For example, historical purchase patterns or preferences for a
customer can be calculated ahead of time.

Real-time calculated features
Features that require being calculated over a dynamic time window. For example,
when predicting ETAs for food delivery, this might require knowing how many
other orders have been made in the last hour.

In practice, we typically have a mix of user- or application-provided features, static
features, and real-time calculated features. Monitoring the lookup and transforma‐
tions needed for these features is important to trace where the latency is coming from
in the ML system.

Next, let’s consider precomputing predictions. In some use cases, it is possible to
reduce prediction latency by precomputing predictions, storing them, and serving
them using a low-latency read datastore. For example, a streaming service might store
ahead of time the most popular recommendations for a new user of their service.
This type of offline batch-scoring job can vastly reduce latencies in the serving
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environment because the brunt of the work has been done before the model has even
been called.

Other Things to Consider
Even with all of the preceding considerations, we have by no means exhausted the
list of potential concerns you might have with monitoring and observability. Here are
some other areas you might want to keep in mind for your monitoring journey.

SLOs in ML monitoring.    SLOs are a popular and still growing technique used to explic‐
itly decide in advance an appropriate level of reliability for systems—in some sense,
determining what the user experience will be—and deciding whether to do feature
work or reliability work, depending on which side of the threshold we are on at a
given moment. For example, if we have decided the customer should have 99.9%
availability, and we move below that at some point, this triggers fixing broken systems
until we are trending at 99.9% again. That way, the union set of ML engineers, the
overall product team, and the SRE team (if any) cooperate to “bend the curve” of the
user’s experienced reliability toward the optimal, decided-on level.

This is a very simple, indeed simplistic, example, and the reality is considerably more
complex in multiple key areas. Even though ML is complex, you can still get some
value out of doing SLOs. But watch out for the following subtleties:

• As we have already established, you cannot determine the suitability of a model•
for production by just looking at the model. Therefore, SLOs have a strong case
for being scoped to cover data as well (and data distribution, freshness, and so
on).

• Availability for request-response serving systems, like the frontend web server•
for yarnit.ai, is a relatively clear-cut issue—it is either serving correct content
within a certain acceptable latency, or it isn’t. What does availability for an ML
system mean when the things being served might have, for example, classifier
confidences ranging from 0.0 to 1.0, and any individual result or set of results
might be completely, correctly, and justifiably less than any arbitrary quality
threshold? At the very least, SLOs for ML therefore have to encompass the idea of
quality or confidence thresholds.

• The best way to do this is, perhaps a little surprisingly, not to focus on the•
ML system performance, but instead to focus on the business objective that the
ML system in question is supposed to deliver. Or in other words, the system as
a whole can suffer degradations of various—perhaps temporary—kinds, if the
overall user experience is still within the defined limits. For more of this topic,
see Chapter 8 of Implementing Service Level Objectives.
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• For environments with lots of models, or lots of model churn, a promising•
approach is a self-service infrastructure so ML engineers can define and enforce
per model or per class of model SLOs (generally by comparison to a golden
dataset); SREs could develop, offer, and support such a service, thus helping the
overall SLO approach scale for everyone. (The same approach can be extended
to separate use cases for a single model, too, as long as such tagging can be done
deterministically.)

• Finally, as is clear from Chapter 11, ML is entangled across the business, and it•
may not be practical to specify SLOs for an ML system without also specifying
them for all or most adjacent systems. (Indeed, you’ll have to, for anything other
than the smallest systems.) Additionally, since inspectability or explainability
is often difficult to obtain, reacting quickly enough to defend a sufficiently
demanding SLO (say, 99.5% or more) is not going to be something a human-
driven process can achieve on its own: this will be a question of automatic
systems acting in concert with the humans. Automatic systems acting on their
own in the non-ML case are often very useful, but we should move with caution
in the ML case.

If you wish to get more concrete about establishing SLOs for your ML infrastructure,
we have a recommendation for where to start. If you look at Table 9-1, you’ll see
our suggestions for what to base your SLOs on, given what you care about. The rows
cover the context of what you’re trying to measure, and the columns address the
scope. So, for example, if you’re worried about the overall system health of your ML
training system, the top-left quadrant is where to go to find ideas on where to start. In
essence, the table outlines behaviors, indicators, or example metrics to base SLOs on.
Of course, this is a nonexhaustive list.

Table 9-1. Behaviors or metrics to monitor per ML context

 Training Serving Application (YarnIt)
Overall
system
health

Model build time (excluding snapshots)
Number of concurrent trainings
Number of failed build attempts
Resource saturation (e.g., GPU or I/O
throughput)

Latency (time to respond to
request)
Traffic (number of requests)
Error count (number of failed
requests)
Saturation (exhaustion of any
particular resource: CPU, RAM, I/O)

Mostly tied to user journey or
session
Purchase rate
Login rate
Page subcomponent failure
rate (e.g., cart display)
Cart abandonment
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 Training Serving Application (YarnIt)
Generic ML
signals /
basic
model
health

Pretraining:
Source data size (i.e., hasn’t grown or
shrunk a lot since last build)
Training:
Training time as a function of model
type and input data size
Training configurations (e.g.,
hyperparameters)
Post-training:
Model quality metrics (accuracy,
precision, recall, other model-specific
metrics)

Model serving latency (as a fraction
of overall serving latency or
compared over time)
Model serving throughput
Model serving error rate (time-out/
empty value)
Serving resource use (RAM in
particular)
Age/version of model in serving

Model-specific metrics (visible
on individual page load)
Number of recommendations
per page
Estimated quality (predicted
click-through) of each
recommendation
Similar metrics for search
model

Domain-
specific
signals

Built model passes validation tests (not
only that aggregate filters work, but
results on golden set and held-out set
tests are of equal or better quality).
Recommendations for new products
in the store are of similar or greater
quality.

These metrics are often delayed.
Offline signals match served
predictions in aggregate and in
relevant slices.
Number of recommendations
served for specific queries matches
pre-serving expectations.

Session- or user-journey-
specific metrics.
Percentage of visits with
purchases is not declining.
Average sale per visit
maintained.
Session duration maintained.

Actually specifying an SLO is best left to other texts, but The Site Reliability Work‐
book, edited by Betsy Beyer et al. (O’Reilly, 2018) has a reasonable example of a
fully specified, exhaustively detailed SLO document; it is also possible to be have
something as simple as “99% of this data is younger than two hours” and for that still
to provide value.

Monitoring across services.    As you scale out your ML infrastructure further, two of
the major things that you’ll probably find yourself doing, which probably won’t
be easy, are distributed tracing, and understanding the latency distribution of your
systems. (Though we’ve been talking about distributions a lot in this chapter, we are
specifically referring to monitoring in this section, rather than ML.)

Distributed tracing, strongly related to observability, enables you to trace the full path
of a request as it goes between different services in a distributed architecture. Think
of it as labeling a request with “give me a full report on the path this takes.” Every
system that handles the request should turn on some degree of extra visibility for it as
it cascades throughout the system. Various commercial and free systems implement
this—you could do worse than look at OpenTelemetry to get a handle on how it
works.

Another crucial area is understanding distributions—in this case, not of ML data, but
of latency. It’s not necessarily intuitive, but in a sufficiently complicated architectural
arrangement, even a surprisingly small proportion of requests that run slowly can
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21 See “The Tail at Scale” by Jeffrey Dean and Luiz Andre Barroso.

end up affecting customer experience significantly.21 Most organizations don’t have
the storage or compute power to track this for every request, so some kind of request
sampling is required—i.e., to track detailed statistics for certain requests, but only a
comparatively small proportion of them by default. You can achieve this in various
ways, depending on your environment, but we advise you to enable these capabilities
early, since the additional insight into customer experience and production behavior
generally can be vital.

Finally, one issue that is typically pertinent to only very large organizations is how
to scale to very large monitoring setups. Though we can’t cover this in detail here,
there are three main issues to consider. First is (1) how to run multiple monitoring
entities without duplication of alerts, data, and so on. Usually this is related to (2)
finding a way to divide the entities to be monitored in a reasonable way (this usually
implies approximately equal partitioning of the monitoring targets). Finally, (3) we
must monitor the monitors, to make sure they themselves are running. Different
monitoring products support these features to a different extent—Prometheus, for
example, can monitor itself and deduplicate alerts. Our experience suggests that
deduplication is potentially the most important capability here—if your system can’t
perform that, the next time you have a serious outage, you potentially have N ×
<number of pages you would receive>, where N is the number of monitoring instances
you have. That could be quite a large number.

Further advice on constructing and running sophisticated monitoring setups is avail‐
able from a variety of sources, but one particularly good source is Observability
Engineering by Charity Majors et al. (O’Reilly, 2022).

Fairness in monitoring.    In this chapter, we have covered important metrics for moni‐
toring the service health, model efficacy, and data integrity of the model. However,
the topic of monitoring includes other things to consider that we will not be able
to cover in this chapter. For example, our deployed models, almost by definition,
have real-world effects: deciding who gets a loan, who gets a job, or what purchasing
decisions we will make. In the increasingly automated world of such decision making,
it is critical we do not codify systemic bias and discrimination through the models.
Fairness is obviously a critical topic and is covered in depth in Chapter 6. From a
monitoring point of view, our major concern is the requirement to facilitate such
visibility into model decisions, while not facilitating inappropriate visibility—see the
next section for more detail.

Privacy in monitoring.    A special case of fairness is the question of privacy in monitor‐
ing. Almost by default, production monitoring dashboards will display the informa‐
tion that is fed to them. You can therefore understand immediately that if your
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22 The business impact of a model is ultimately the only reason it exists. Every other metric is secondary to the
purpose for which the model was built. Therefore, direct monitoring of business impact is the holy grail of
monitoring, however difficult it might be. Determining the correlation between available monitoring metrics
and business value is almost certainly the most important thing for the organization to do in order to extract
the most value out of its ML efforts in production.

monitoring stack exposes PII or other sensitive information, that will go right to
the dashboard and be viewable to all who can access it at the dashboard level—even
if they can’t access it at the production level. This is clearly a violation of privacy
expectations, if not some privacy-concerned legal frameworks themselves (though we
are not lawyers).

Though every situation has nuances, in general we recommend that if you can’t
tolerate the risk of PII escaping, you either tighten dashboard access (and every inter‐
mediate point where that information is collected), or you control what happens to
the PII on egress from the first point of aggregation—for example, names, addresses,
and so on, are fully anonymized and the system has had a thorough privacy review.
In general, though controlling access to a dashboard is simpler and easier, it’s really
not a strong control point. You almost certainly want (need!) to PII-proof the data at
the first point of egress from the monitoring system, or even do it in a staged way,
where different kinds of data can be processed or stripped at different ingress points
to different systems—a multistage filtering approach. Again, see Chapter 6 for a much
more complete treatment of this important issue.

Business impact.    Another important category we don’t cover is relating the model
performance metrics to the business impact of the model. We measure model perfor‐
mance with statistical metrics such as AUC or log loss, but those don’t incorporate
the concrete impact that the business has experienced when the metrics degrade. The
more representative the metrics are, the easier it will be to make that connection—
choose carefully!22

Dense data types (image, video, text documents, audio, and so on).    Another important cat‐
egory we won’t be covering is monitoring for dense data types, also sometimes called
unstructured data—though since these formats are, in fact, highly structured, this is a
bit of a misnomer! As ML increasingly uses images, video, and so on as inputs into
its models, it’s necessary to monitor data integrity for these nontabular data types
too. There aren’t commonly available approaches today, and we call on the industry
to actively work toward supporting this. One growing approach is to monitor the
embedding outputs of the data itself. ML practitioners use embeddings to map these
items (e.g., movies, images) to lower-dimensional vectors where similar items are
closer together. Monitoring these lower-dimensional vectors provides a proxy to
monitoring dense data types.
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High-Level Recommendations for Monitoring Strategy
“Serving” on page 205 made many detailed recommendations for how to start mon‐
itoring, but we’d like to cover a few high-level recommendations for your overall
monitoring strategy here:

Actuals or not
If your model is able to get back actuals in a near real-time way, monitoring
model/KPI performance is the best signal, since that corresponds most closely to
your concept of what the model is doing. If you don’t have reasonable actuals,
you’ll have to build a picture of what’s happening from a set of partial sources,
including infrastructural elements as well as model performance. Look at the
“Generic recommendations” item toward the end of this list for hints on how to
do that.

Model performance metrics
In general, you are best served by exposing the model performance statistics we
talked about in “Model” on page 206. Doing this is strongly dependent on your
local monitoring situation, ML platform usage, and so on, so we can’t tell you
how to do this in detail, but at the very least you should be tracking them. There’s
also some value in looking at how the model performance is working at a pure
service level. Think of it as a simple request-response service; if the model is
unable to make predictions/recommendations, if the model produces predictions
with a drastically lower confidence, and if any algorithmic fallback path is being
invoked more than expected, these are all good things to know (and you should
therefore monitor them).

Data concerns (drift)
It is vital to track the distribution of input data on an ongoing basis, so com‐
puting the various measures of distribution (PSI, KL divergence, Wasserstein
distance, etc.) and also surfacing that in your monitoring system is vital. (The
distribution of your output data—i.e., the predictions themselves, reconciled with
reality—is covered previously.)

Data concerns (quality)
Track missing data, type mismatches, data corpus size, and related attributes as
discussed previously in this chapter. Some of the recommendations from the
training section are also hugely relevant in the serving context too—not the
duration of training itself, of course, but everything about the availability of data.

Service or infrastructure performance
As a first approximation—i.e., you need a place to start—you can treat this as
any serving system. From Site Reliability Engineering, there are four golden signals
you can use to look at the high-level state of your serving system: latency, traffic,
errors, and saturation. If you establish good levels for these—via, for example,
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Chapter 8 of Implementing Service Level Objectives—it’s quite hard for something
to go seriously wrong in infrastructure and not have it be reflected in those
numbers. In some sense, “goodput” is what you’re looking for: questions are
arriving at a reasonable rate, and getting answered correctly and quickly enough
for the needs of the application.

Alerting and SLOs
We haven’t said much specifically about alerting in this chapter, since in general,
once you’re monitoring a metric and have established some kind of threshold,
alerting is (supposed to be) a fairly mechanical achievement. But it’s important
to pay special attention to the questions of deciding what the right metrics to
alert on are—definitely not every metric—and what makes for a good threshold.
Otherwise, everyone gets drowned in alerts, sucking away valuable cognitive
attention, almost all of which are basically irrelevant to the customer experience.
For more on this, a good place to start might be Chapter 8 of Implementing
Service Level Objectives.

Though many of the conceptual underpinnings of request/response systems
apply to ML serving systems, training is different, being primarily either batch
or streaming oriented. One potential problem you’ll often come across in moni‐
toring training is the question of how to alert for model building being late. The
major challenge here is that since the model building duration can be a large
number of minutes, hours, or even days, it doesn’t make much sense to alert on
every fluctuation in training performance; otherwise, you’ll be alerting too much.

The quantity that becomes important therefore is catch-up time. If your model
takes roughly (say) 20 hours to build, and you have a requirement for a new
model every 24 hours, what happens if you get 8 hours through building and
then stall for 4 hours? Having consumed 12 wall-clock hours, with 12 wall-clock
hours to go, if you resume training at your previous rate, you will have 12 hours
of learning before you’re finished. So you may already have blown your deadline,
and predicting that 12 hours early would be a significant optimization. Therefore
maintaining a notion of how long it would take to catch up, and alerting when
current time + catch-up time is greater than threshold will bring attention to
potentially stuck situations usefully quickly.

Generic recommendations
An important monitoring and/or debugging technique is to log predictions (ID,
value) to a table, or some otherwise easily searchable format—if you’re concerned
about speed, head-of-line blocking, and so on, then sampling is also a perfectly
tractable approach (though you will then lose guaranteed explainability). For
extra points, have a column for the actual value, as opposed to the prediction, so
you can backfill and compare. In the world of microservices and/or distributed
tracing, it’s also useful to get the client consumer of a prediction to log the
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prediction ID as well, so you have a chain of joinable events. (Sometimes it’s OK
to kick away this kind of scaffolding in the process of moving from development
to prediction, but it’s generally handy in both contexts.)

Explainability during serving
The gold standard for explainability during serving is what’s called individual
inference level explainability—in other words, why was this specific transaction
granted, or denied, or what led to the classifier making that particular decision
in this particular context? As per the preceding “Generic recommendations”
paragraph, success here really looks like being able to tie the specific state of the
model at the time of specific prediction request with a specific state. In some
industries, such as lending, models that predict whether to give an individual a
loan may use explainability to surface why an individual was rejected. This is
often communicated to the downstream users via reason codes.

Conclusion
We hope this chapter has provided a useful overview to monitoring your ML systems
from birth to happy life in production. To reiterate: the main battle is to realize
that you need to monitor at as high a level of fidelity as you can—for explainability,
production debugging, and just generally knowing how your business is doing. Once
you accept that, you can choose from multiple approaches to implementation, and
aggregating the various “Concrete recommendations” sections of this chapter should
be of use to you.
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CHAPTER 10

Continuous ML

Up until now, our discussions of ML systems have sometimes centered on the idea
that a model is something we train and then deploy, almost as though this is some‐
thing that happens once and only once. A slightly deeper view is to draw a distinction
between models that are trained once and deployed versus those that are trained in
a more continuous fashion, which we will refer to as continuous ML systems. Typical
continuous ML systems receive new data in a streaming or periodic batch fashion and
use this to trigger training an updated model version that is pushed to serving.

Clearly, there are major differences from an MLOps perspective between a model
that is trained once versus a model that is updated in a continuous manner. Moving
to continuous ML raises the stakes for automated verification. It introduces the
potential for headaches around feedback loops and model reactions to changes in the
external world. Managing continuous data streams, responding to model failures and
corruptions, and even seemingly trivial tasks like introducing new features for the
model to train on all increase system complexity.

Indeed, on the surface, it may seem like creating a continuous ML system might be
a terrible idea. After all, in doing so, we expose our system to a set of changes that
is inherently unknowable in advance because of potential changes in the real external
world, and thus may cause unexpected or undesired system behavior. If we remember
that in ML, data is code, the idea of continuous ML is to accept the equivalent of a
steady stream of new code that can change the behavior of our production system.
The only reason to do this is when the benefits of a continuously updating system
outweigh the costs. In many cases, the benefits are indeed considerable, because
having a system that can learn and adapt to new emerging trends in the world can
enable a level of overall system quality that could help us achieve complex business
and product goals.
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The goal of this chapter is to examine the areas where costs can accrue and problems
may arise, with the aim of keeping the overall cost of continuous ML systems as low
as possible while retaining the benefits. These include the following observations:

• External world events may influence our systems.•
• Models may influence their own future training data through feedback loops.•
• Temporal effects can arise at several timescales.•
• Crisis response must be done in real time.•
• New launches require staged ramp-ups and stable baselines.•
• Models must be managed rather than shipped.•

Each of these points summarizes a range of underlying complexities, which we will
dive into in the bulk of this chapter. The technical challenges are not the end of the
story, of course. In addition to the practical and technical challenges that continuous
ML introduces into our ML development and deployment processes, it also creates
organizational opportunities and complexities.

Models that are continuously improved need organizations capable
of managing that continuous improvement.

We need frameworks for generating and tracking ideas for improvements to the
model. We need a way to evaluate the performance of various versions of our models
over long periods of time rather than focusing sharply on the point of time when we
launch one model to replace another. We need to think of modeling as a long-lived,
value-generating program that has costs and risks but also huge potential benefits,
and discuss the organizational implications of these needs at the end of this chapter.

Anatomy of a Continuous ML System
Before we look in detail at the implications of continuous ML systems, let’s take some
time to take a pass through the typical ML production stack and see how things
change in the continuous setting compared to the noncontinuous setting. At a high
level, a continuous ML system regularly takes data in from the world in a steady
stream, uses it to update the model, and then after appropriate validation, pushes out
an updated version of the model to serve new data.
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1 See “5. Ad Click Prediction: Databases Versus Reality” on page 353 for an example where this happens.

Training Examples
Rather than existing as a fixed set of immutable data, training data in a continu‐
ous ML system comes in a steady stream. This might include things like sets of
recommended products from a set of possible yarn products, along with the query
that generated these recommendations. In high-volume applications, the stream of
training examples may resemble a firehose, with significant amounts of data being
collected every second from all regions of the globe. Significant data engineering can
be required to ensure that this stream of data is processed effectively and reliably.

Training Labels
The training labels for our examples also come from the world in a stream. Interest‐
ingly, the source of this stream may well be distinct from the stream of training
examples itself. For example, say we wish to use whether the user purchased a given
yarn product as the training label. We know which products a user is shown at query
time, and can log those as they are sent to the user. However, purchase behavior can‐
not be known at query time—we have to wait for some time to see if they choose to
buy—and this information may come from a purchase-handling system that resides
in a completely different part of the overall service infrastructure. In other settings,
we may see delays in training labels when those are provided by human experts.

Joining together the examples with their correct labels thus requires unavoidable
delay, and likely involves some relatively sophisticated infrastructure to process
efficiently and reliably. Indeed, this joining is production critical. Just imagine the
headache that would be caused if the label information was unavailable because of an
outage, and unlabeled examples were sent to the model for training1.

Filtering Out Bad Data
Whenever we allow our models to learn directly from behavior in the world, we run
the risk that the world will send along behaviors that we wish our model did not
have to learn from. For example, spammers or scammers may try to interfere with
our yarn product prediction model by issuing many fake queries without purchasing
in an attempt to make it appear that some products are desired less by users than
they actually are. Or some bad actors may try to make our helpful yarnit.ai chatbot
learn rude behavior by entering offensive text repeatedly into the chat window. These
attacks must be detected and dealt with. Less malicious but equally damaging forms
of bad data may be caused by pipeline outages or bugs. In all cases, it is important to
remove such forms of bad data from the pipeline before training, so that the model
training is not impacted.
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2 See “Feature store” on page 72 for an in-depth treatment of feature stores.

Effective removal of spammy or corrupted data is a difficult task. It requires auto‐
mated methods for anomaly detection, and models whose primary purpose is to
detect bad data. Often an arms race of sorts arises between the bad actors trying to
inappropriately influence the model and ops teams trying to detect these attempts
and filter them out. Effective organizations often have fully dedicated teams devoted
just to the problem of filtering out bad data from a continuous ML pipeline.

Feature Stores and Data Management
In typical production ML systems, raw data is converted into features, which in
addition to being useful for learning are also more compact for storage. Many pro‐
duction systems use a feature store for storing data in this way, which is essentially
an augmented database that manages input streams, knows how to convert raw data
into features, stores them efficiently, allows for sharing among projects, and supports
both model training and serving.2 For high-volume applications, it is often necessary
to do some amount of sampling from the overall stream of data to reduce storage and
processing costs. In many cases, this sampling will not be uniform. For example, we
might wish to keep all of the (rare) positives but only a fraction of the (very common)
negatives, which means we will need to track these sampling biases and incorporate
them with appropriate weighting into training.

Even though the featurized data is more compact and generally more useful, it will
almost always be necessary to also keep some amount of logged raw data as well. This
is important to have, both for developing new features and for testing and verifying
correctness of the feature extraction and transformation code paths.

Updating the Model
In continuous ML systems, it is often preferable to use a training methodology
that allows for incremental updates. Training methods based on stochastic gradient
descent (SGD) can be used without any modifications in continuous settings. (Recall
that SGD forms the basis of most deep learning training platforms.) To use SGD in
a continuous setting, we essentially just close our eyes and pretend that the stream of
data shown to the model comes in a stochastic (random) order. If our data stream is
actually in a relatively shuffled order, this would be totally fine.

In reality, a stream of data often has time-based correlations that are not really
random, and then we have to worry about how much breaking this assumption hurts
us in practice. The absolute worst way that our data could be nonrandom is if we
had an upstream batch-processing job that ordered, say, all the positives to come in
one batch, and then all the negatives to come in another. SGD approaches would fail
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miserably on data like this, and we would need to create intermediate shuffling of the
data to help put SGD on safer, more randomized ground.

Some pipelines enforce a strict policy of training on a given example only once, in the
order that it appeared temporally in the stream. This policy simplifies many things,
both from an infrastructure standpoint and from a model analysis and repeatability
standpoint, and when data is plentiful has no real drawbacks. However, more data-
starved applications may need to visit individual examples many times to converge to
a good model, so this strategy of visiting each example exactly once in order cannot
always be followed.

Pushing Updated Models to Serving
In most continuous ML settings, we refer to major changes to a model as a launch.
Major changes might include changes to a model architecture, the addition or
removal of certain features, a change in hyperparameter settings like learning rates,
or other changes that would motivate us to fully reevaluate the performance of a
model before launching it as our production model. Minor changes such as small
modifications to internal model weights based on new incoming data are referred to
as updates.

As the model is updated, we will periodically write out checkpoints saving the current
state of the model. These checkpoints are then pushed out to serving, but they are
also important for disaster recovery. One way to think about pushing a new model
checkpoint out to serving is that it is actually a small, automated model launch, and
if we push a new checkpoint four times an hour, then we are doing almost a hundred
small, automated model launches a day.

All of the things that can go wrong with a major model launch can also go wrong
when we push a new checkpoint to serving. The model may be corrupted somehow—
perhaps by bugs, perhaps by having been trained on bad data. The model file itself
may be flawed, perhaps corrupted by write errors, hardware bugs, or even (yes, really)
cosmic rays. If the model is a deep learning model, there is a chance that in the
most recent training step it has “exploded” and the internal model parameters contain
NaNs, or that we run into the vanishing gradients problem, effectively halting further
learning. If our checkpointing and pushing process is automated, there may be bugs
in that system. If our checkpointing and pushing process is not automated, and
relies instead on manual effort, then the system is probably not ready to be run in a
continuous mode.

Of course, lots of things can go wrong with our system if we do not regularly push
model updates based on new data, so the point is not to avoid updating models, but
rather to point out that validation of model checkpoints is a critical step before they
are pushed to serving. Typical strategies use staged validation. First we use tests that
can be performed offline without impacting the production system, such as loading
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3 In statistics and ML parlance, the IID assumption is that data is drawn independently from an identical
distribution—that is, that our test sets and training sets are randomly drawn from the same sources in the
same way. This is covered in much more detail in Chapter 5.

the checkpoint and scoring a set of golden set data in a sandbox environment. All of
the offline evaluation methods discussed in Chapter 5 apply here. Then we load the
new checkpoint into a canary—a single instance that we observe carefully to see if it
fails—and allow it to serve a tiny amount of traffic, and then as long as monitoring
holds, we slowly ramp up the amount of traffic served by the updated version until it
is finally serving 100% of the data.

Observations About Continuous ML Systems
Now that you’ve gotten a bit familiar with the ways that continuous ML pipelines
can differ from their noncontinuous cousins, we can dive into some of their unique
characteristics and challenges.

External World Events May Influence Our Systems
When we look at the API for a widely used class or object, like a vector from the
C++ standard template library or a Python dictionary, they typically do not include
a stark line of documentation that reads, “WARNING: behavior undefined during the
World Cup.” Thank goodness they don’t, and don’t have to.

In contrast, continuous ML systems have—or should have—exactly this form of
warning. It could read something like this:

Any change in input distributions to the model in production
may cause erratic or unpredictable system behavior, because the
theoretical guarantees for most ML models really hold for only the
IID setting.3

The sources of such changes may be incredibly varied and unexpected. Sporting
events, election nights, natural disasters, daylight savings, bad weather, good weather,
traffic accidents, network outages, pandemics, new product releases—all of these are
potential sources of changes to our data streams, and thus to our system behavior.
In all cases, we are likely to have little or no warning about the events themselves,
although monitoring strategies described in Chapter 9 might help you to think about
what’s required for prompt alerts.

What sorts of things can happen from an external event? Here’s an example. For
our yarn store, let’s imagine the impact of having a major political figure appear on
national television on a frigid day wearing hand-knit brown woolen mittens. Searches

230 | Chapter 10: Continuous ML



and purchases for “brown wool” spike suddenly. After a short delay, the model is
updated on this new influx of search and purchase data, and learns to predict much
higher values for brown wool products. Our model is trained with a form of SGD,
which ends up overconfident and making scores extremely high for these products.
Because of the sudden high scores, these products are shown to nearly all users, and
the available stock is rapidly sold out. Once all stock is sold out, no more purchases
are made, but nearly all searches are still showing brown wool products because of
their high score from our model.

The next influx of data shows that no users are purchasing any products, and the
model overcompensates, but because the brown_wool products have been shown on
such a broad range of queries to such a broad range of users, the model now learns
to give lower scores for nearly all products, resulting in no results or junk results for
all user queries. This reinforces the trend that no users are purchasing anything, and
the system spirals down, until our MLOps team identifies the issue, rolls the model
back to a previous well-behaved version, and filters the abnormal data from our store
of training data before re-enabling training.

Clearly, this example can be addressed with potential fixes and monitoring at multiple
levels, but it illustrates the way that system dynamics can have consequences that are
difficult to anticipate in advance.

One subtle danger of knowing that a wide variety of world events can cause unexpec‐
ted system behavior is that we can end up explaining away changes in observed
metrics or monitoring too quickly. Knowing that Argentina and Brazil are playing
an important soccer (football) match today may cause us to assume that this is the
root cause for an observed system instability, and miss rooting out a pipeline error or
other system bug.

What would it look like to have a continuous ML system that was completely robust
to distribution shifts? Basically, we would need to have a way to adaptively weight the
training data so that its distribution did not depend on changes in the world. One
way to do this would be to create a model to do propensity scoring, which shows how
likely a given example is to occur in our training data at a given time. We would then
need to weigh our training data by the inverse of this propensity score, so that rare
examples are given greater weight. The propensity scores would need to be updated
quickly enough that when a world event caused some examples to suddenly be much
more likely than in the past, they were down-weighted accordingly. Most importantly,
we would need to make sure that all examples had nonzero propensity scores to avoid
divide-by-zero issues when doing inverse propensity scoring.

We need to avoid propensity scores that are too small, so that the inverse propensity
weighting does not get blown up by a small number of examples with huge weights.
This could be done by capping the weights, except that we would also need these
scores to be statistically unbiased, and capping weights would cause bias. Instead,
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we could use extensive randomization to ensure that no example has too low a
probability of being included, but this may well mean exposing users to random or
irrelevant data or having our models suggest random actions that may be undesirable.
All in, achieving a setup like this is possible in theory but extremely difficult in
practice.

The reality is that we are likely to have to find ways to manage
instability due to distribution shifts, rather than completely solve
them.

Models Can Influence Their Own Training Data
One of the most important questions to answer for our continuous ML system is
whether a feedback loop exists between a model and its training data. Clearly, all
trained models are influenced by the stream of data that comes in for training, but
some models also, in turn, influence the data that is collected.

To help understand the issues, consider that some model systems have no influence
over the stream of data that is collected for retraining. Weather prediction models
are a good example. No matter what the weather station might like us to believe,
a prediction that tomorrow will be a nice sunny day has no actual influence on
atmospheric conditions. Such systems are clean in the sense that they do not have
feedback loops, and we can make changes to models without fearing that we might
impact tomorrow’s actual chance of rain.

Other models do influence the collection of their training data, especially when those
models make recommendations to users or decide on actions that impact what they
can learn about next. These create implicit feedback loops, and as anyone who has
heard screeching feedback from a microphone knows, feedback loops can create
unexpected and detrimental effects.

As an easy case, some systems that rely on feedback loops to learn about new trends
might miss them entirely if they never have a mechanism that allows them to try a
new thing in the first place. We might reflect on the experience of trying to get a child
to try a new food for the first time as a way to think about this effect. As a more
concrete example, consider a model that helps recommend wool products to show to
users; the model may then be trained on the user response to those selected products,
such as clicks, page views, or purchases. The model will receive feedback about the
products that were selected to be shown to the user, but will not get feedback about
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4 Those familiar with different subfields of ML will note that this is technically a contextual bandit setting, and
thus subject to an explore versus exploit trade-off. The main idea in this setting is that when our system learns
only about the things it intentionally selects, it is important to sometimes randomly change our selections
to explore the world a little more and make sure we do not lock our system into a self-perpetuating loop of
beliefs. Exploring too little leads to missing out on the very best; exploring too much is a waste of time and
resources. Parallels to any of our own life choices are, of course, completely coincidental.

5 See The Flash Crash: A New Deconstruction for an in-depth treatment of the events that lead up to the flash
crash, including consideration of the triggering incident as well as the facilitating market conditions. One
point to take away from this discussion is just how hard it can be to do root-cause analysis on systems that
involve multiple models interacting with one another.

products that were not selected.4 It is easy to imagine that a new wool product, such
as a new color of organic alpaca yarn, might be something that users would love
to purchase, but for which the model has no previous data. In this case, the model
might continue recommending previous nonorganic products and be oblivious to its
omission.

Not discovering new things is bad, but even worse behaviors can happen. Imagine
a stock market prediction model that is in charge of picking stocks to buy and sell
based on market data. If an external entity mistakenly makes a large sale, a model
might observe this and predict that the market is about to go down and most hold‐
ings should also be sold. If this sale is large enough, this will drive down the market,
which may make the model even more aggressive about wanting to sell. Interestingly,
other models—potentially from completely disjointed organizations—may see this
signal in the market and also decide to sell, creating a reinforcing feedback loop that
creates an overall market crash.

While the stock prediction scenario is an extreme case, it did, in fact, happen.5

However, we don’t need to exist in a broad market of competing models to experience
these effects. For example, imagine that in our yarnit.ai store, we have one model
that is in charge of recommending products to users, and one model that is in charge
of determining when the user should be given discounts or coupons. If the product
recommendation relies on purchase behavior as a signal in training, and the presence
of discounts influences purchase behavior, then there is a feedback loop that links
these two models, and changes or updates to one model can influence the other.

Feedback loops are another form of distribution shift, and the propensity-weighting
approaches we’ve described can be helpful, although they are difficult to get com‐
pletely right. The effect of feedback loops can be lessened to some degree by logging
model version information along with other training data, and using this information
as a feature in the model. This at least gives our model the opportunity to disambigu‐
ate whether a sudden change in observed data is due to a change in the real world—
such as the holidays are over, and nobody wants to buy wool (or indeed much of
anything) in early January—or a change in the model’s learned state.
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Temporal Effects Can Arise at Several Timescales
We create continuous ML systems when we care about the ways that data changes
over time. Some of these changes are deeply meaningful to the underlying product
needs, like the introduction of a new form of synthetic wool or the creation of
automated knitting machines suitable for home use. Incorporating data about these
emergent trends as soon as possible would be important for our yarnit.ai store.

Other temporal effects are cyclical, with cycles occurring over at least three major
timescales:

Seasonal
Many continuous ML systems experience profound seasonal effects. For online
commerce sites like yarnit.ai, dramatic changes and increases in purchasing
behavior can occur as the winter holidays approach, followed by a sudden drop
in early January. Warm weather months and cool weather months may have very
different trends—and may also vary significantly by geographic region or even
by Northern versus Southern Hemisphere. The most effective way to deal with
seasonality effects is to make sure that our model has trained on data from more
than one full year in the past—if we are fortunate enough to have it—and that
time-of-year information is included as a feature signal in the training data.

Weekly
Just as data can vary by season, it can also cycle on a weekly basis, based on day
of week. Weekend days may have significantly more usage for some cases, like
the portion of our yarnit.ai store targeted to hobbyists—or significantly less for
others, like the portion of the yarn store that targets business-to-business sales.
Locality is strongly tied in here, as weekend days may differ by country, and
time-zone effects also matter strongly, as it may be Monday in Tokyo while it is
still Sunday in San Francisco.

Daily
Things start to get nontrivial when we look at the daily effects, based on time
of day. At first glance, it is obvious that many systems will experience different
data at different times of day—midnight behavior is likely different than early
morning, or during the work day. It is also likely clear that locality is crucial here,
because of time-zone effects.

The subtlety for daily cycles comes in when we consider that most continuous ML
systems actually run continuously behind reality, because of the inherent need for
delays in pipelines and data streams waiting for training labels—such as click or pur‐
chase behavior that may take some time for a user to decide on—as well as filtering
out bad data, updating models, validating checkpoints, and pushing checkpoints to
serving and ramping them up fully. Indeed, such delays could add up to 6 or even 12
hours. Therefore, our models may be operating very much out of phase with reality,
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serving a version of the model that thinks it is the middle of the night when, in fact, it
is in the heart of the workday.

Fortunately, fixing such issues is relatively easy, by logging time-of-day information
along with other training signals and using these as inputs to our models. But it
highlights the importance of thinking through ways that the version of the model we
happen to have loaded in serving may be stale or otherwise misinformed about the
actual reality it is asked to work with at that moment.

Emergency Response Must Be Done in Real Time
By this point, it should be clear that while continuous ML systems can provide great
value, they also have a broad range of system-level vulnerabilities. It can be argued
that a continuous ML system inherits all of the production vulnerabilities of large,
complex software systems—which carry plenty of reliability issues on their own—and
adds in a whole set of additional issues that can produce undefined or unreliable
behavior. In most settings, we cannot rely on theoretical guarantees or proofs of
correctness.

When such issues arise in continuous ML systems, they not only need to be fixed,
but also need to be fixed (or mitigated) in real time. There are several reasons for
this. First, our models are likely mission critical, and having a production fire that
impacts our ability to serve useful predictions from our models may impact our
organization minute to minute. Second, our model may have a feedback loop with
itself, meaning that if we do not address issues quickly, the stream of input data may
also be corrupted and require care to fix as well. Third, our model may be part of
a larger ecosystem that is difficult to reset to a known state. This can occur when
our model is in a feedback loop with other models, or when poor predictions from
a model create lasting harm and are difficult to undo, such as an otherwise helpful
yarnit.ai chatbot suddenly issuing rude curses at users.

Real-time crisis response requires first detecting issues quickly, which means that
from an organizational standpoint, a good litmus test for determining whether we are
ready for continuous ML is to examine the thoroughness and timeliness of our moni‐
toring and alerting strategies. It can take time for the full effect of data imperfections
to create downstream detrimental effects, because of pipeline delays and slow changes
in systems that learn gradually on new data. This makes it especially important to
have simple canary metrics that alert on changes to input distributions, rather than
waiting for model outputs to change.

Monitoring or altering strategies will be helpful in real time only if they are supported
by folks who have the responsibility to respond when the alerts fire. Well-functioning
MLOps organizations set up specific service-level agreements about how quickly an
alert must be responded to, and set up mechanisms like pager rotations to ensure
that the alert is seen by the right person at the right time. Having a global team with
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teammates in several time zones, should you be in that fortunate position, can help
tremendously with avoiding the need for folks to be woken up by an alert at 3 A.M.

Once we receive an alert, we need to have a well-documented playbook of responses
that can be carried out by any member of the MLOps team, along with an escalation
path for further action.

For continuous ML systems, we have a set of basic immediate
responses to any given crisis. These are stop training, fall back, roll
back, remove bad data, and roll through.

Not every crisis needs all of these steps, and the choice of which response is most
appropriate depends on the severity of the issue and the speed with which we are
able to diagnose and cure the root-cause issue. Let’s look at each of these basic crisis
response steps for continuous ML systems and then discuss factors for choosing a
response strategy.

Stop training
It has been said that the First Rule of Holes is this: when you find yourself in a hole,
stop digging. Similarly, when we find that our data stream is corrupted in some way,
perhaps by a bad model, or an outage, or a code-level bug somewhere in the system,
a useful response can be to stop model training and halt pushing any new model
versions out to serving. This is a short-term response that at least helps ensure that
problems will not get worse while we decide on a mitigation or fix. It makes sense
to ensure that there is an easy way for MLOps folks to stop training on any model
that is their responsibility. Automated systems are helpful here, but of course need
to alert sufficiently so we do not discover that a model has silently stopped training
three weeks ago.

It is always useful to have the equivalent of a Big Red Button that
can be used to stop training manually in a detected emergency.

Fall back
In continuous ML systems, it is important to have a fallback strategy that can be
used in place of our production model that provides acceptable (even if nonoptimal)
results. This could be a far simpler model that does not train in a continuous fashion,
or a lookup table of the most common responses, or even just a small function that
returns the median prediction to all queries. The key thing is that if our continuous
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ML system encounters sudden massive failures—what we might describe as “being on
fire”—we have an ultra-reliable method that can be used as a temporary replacement
without the larger product becoming completely unusable. Fallback strategies are
typically less reliable in overall performance than our main model (otherwise, we
would not use an ML model in the first place), so fallback strategies are very much
intended to be short-term responses that allow for emergency responses to take place
in other parts of the system.

Roll back
If our continuous ML system is currently in a crisis state, it makes sense to revert the
system to a state from before the crisis and see if everything is OK. The root cause of
our crisis may have come in through two basic areas: bad code or bad data.

If we believe that the root cause of our issue is bad code, from a recently introduced
bug, then rolling back our production binaries to use a previously known-good
version may fix the issue in the short term. Of course, any rollback to a previous
production binary must be done in a staged ramp-up in case any new compatibility
issues or other flaws exist that make the old version of the binary no longer usable. At
any rate, it is important to keep on hand a set of fully compiled previous binaries so
that rollback can be done quickly and efficiently when needed.

If we believe that the root cause of our issue is bad data that has caused the model
to train itself into a bad state, it makes sense to roll back the model version to a
previously known-good version. Again, it is important to keep checkpoints of our
trained production model on hand so that we have a set of previous versions to
choose from. For example, imagine that Black Friday sales in the US cause such a
large increase in purchase requests from users to our yarnit.ai store that the fraud
detection portion of the system starts to label all purchases as invalid, making it look
to our model as though all products are extremely unlikely to be purchased. Rolling
back to a version of the model that was checkpointed a week before the Black Friday
date would at least allow the model to serve reasonable predictions while the rest of
the larger system was fixed.

Remove bad data
When we have bad data in our system, we need to have an easy way to remove it
so that our model will not be corrupted by it. In the preceding example, we would
want to remove the data that was corrupted by the faulty fraud detection system.
Otherwise, when we re-enable training to proceed, this data will be encountered by
our rolled-back model as it moves forward in time through the training data, and
it will be corrupted by the bad data again. Removing bad data is a useful strategy
whenever we believe that the data itself is highly unrepresentative of typical data and
is unlikely to give the model useful new information, and that the root cause of the
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bad data is temporary, due to an external world event or to bugs in our system that
can be quickly fixed.

Roll through
If we have stopped training for our continuous ML system, at some point we need to
cross our fingers and enable it to resume training. We typically do this after bad data
has been removed and we are sure that any bugs have been addressed. However, if
a crisis is detected due to an external world event, sometimes the best response is to
just cross our fingers and roll through it, allowing the model to train on the atypical
data and then to recover itself as the world event ends. Indeed, it is unfortunately true
that this world has few days with no political event, major sporting event, or other
major newsworthy disaster happening somewhere, and making sure that our model
has enough exposure to atypical data like this from different global regions can be an
important way to ensure that our model is generally robust.

Choosing a response strategy
How do we choose which events to stop, roll back, and remove, and which to roll
through? To answer that question, we need to observe our model’s response to similar
historical events, which is most easily done when we have trained the model on
historical data in sequential temporal order. Another important question to answer is
whether the crisis-indicating metrics we are currently seeing are due to a bad model
or to the atypical state of the world. In other words, is our model broken, or is it just
being asked to handle much more difficult requests right now? One way to judge this
is to observe offline metrics on golden set data, which should be recomputed for our
model on a frequent periodic basis for this reason. If the model is actually corrupted,
the golden set results may show a sharp decrease in performance, and rolling through
is probably not the right approach.

Organizational considerations
When a crisis is currently going on, it can be a difficult time to learn new skills, to
figure out roles within a team, or to decide on how to implement various response
and mitigation strategies. Real-world firefighters regularly train together, refine best
practices, and ensure that all of the infrastructure they need to respond to an alarm
is in excellent condition and is ready to roll into action at a moment’s notice. Simi‐
larly, we do not know exactly when our continuous ML systems will require crisis
response, but we can confidently say it will happen and that we need to be well
prepared. Creating an effective crisis response team is part of the cost of creating
and maintaining a continuous ML system, and must be accounted for when we move
in this direction. This is discussed in more detail in “Continuous Organizations” on
page 242.
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New Launches Require Staged Ramp-ups and Stable Baselines
When we have had a model running as part of our continuous ML system for a
period of time, we will eventually want to launch a new version of that model that
creates improvements in various ways. Maybe we want to use a larger version of the
model for improved quality and now have serving capacity to handle it, or perhaps
a model developer has created several new features that significantly improve predic‐
tive performance, or maybe we have discovered a more efficient model architecture
that reduces serving costs in an important way. In cases like these, we need to
explicitly launch the new version of the model to replace the old version.

Launching a new model most often involves some amount of uncertainty because of
the limitations of offline testing and validation. As we describe in Chapter 11, offline
testing and validation can give useful guidance on whether a new version of a model
is likely to perform well in production, but often cannot give a complete picture. This
is especially true when our continuous ML model is part of a feedback loop, because
the data that we have previously trained on was most likely chosen by a previous
model version, and evaluation on offline data is limited to data that has been collected
based on actions or recommendations made by that previous model. We can imagine
this situation as similar to that of a student driver, who is first evaluated by sitting in
the passenger seat and being asked to give their opinion about the instructor’s actions
in driving the car. Just because they agree 100% with the actions of the instructor
does not mean that they will not make some poor decisions when first given the
opportunity to steer the car for themselves.

In this way, a new model launch requires some amount of testing in production as the
final form of validation. We need to give our new model the ability to demonstrate
that it is capable of being in the driver’s seat. But that doesn’t mean we just hand
it the keys and expect everything to be perfect. Instead, we will most often use a
staged ramp-up, first allowing the model to serve only a fraction of the overall data,
and increasing that amount only as we observe good performance over time. This
strategy is commonly known as an A/B test: we test out our new model A against the
performance of our old model B, in a format that resembles a controlled scientific
experiment and helps verify that the new model will show the appropriate perfor‐
mance on our final business metrics (which may be distinct from offline evaluation
metrics like accuracy).

The difference between a model launch and an ideal A/B test is that in a scientific
experiment, A and B are independent and do not influence each other. For example,
if we run an experiment in a scientific setting to determine whether cotton sweaters
(A) keep people as warm as natural wool sweaters (B), the people wearing wool
sweaters are unlikely to make the people wearing cotton ones report feeling any
warmer or colder. However, if the wool sweater folks are so warm and happy that they
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go make tea and hot soup for the cotton sweater folks, this would definitely ruin our
experiment.

For A/B experiments comparing continuous ML models, it turns out that A and B
may well influence each other when our models are part of a feedback loop. For
example, imagine that our new model A does a great job of recommending organic
wool products to yarnit.ai users, whereas our previous model B had never done so.
An A/B experiment might initially show that the A model is much better in this
regard, but then as training data is produced by A that includes many more organic
wool recommendations and purchases, the B model (which is also continuously
updating) may then also learn that these products are liked by users and begin to
recommend them as well, making the two models appear identical over time. If
these effects are more diffuse, it can be hard to say whether the benefits of A have
disappeared because it was never actually better than B, or if B has itself improved.

We could try to fix this by restricting A and B to each train on only the data that
they themselves serve. This strategy can work well when each model serves the same
amount of data, such as 50% of the overall traffic each, but can make for flawed
comparisons in other cases. If A is looking bad early on, is that because the model is
bad, or because it has only 1% of training data while B has 99%?

Another strategy is to try to create a stable baseline of some sort, which can help
serve as a reference point in comparisons so that we can figure out whether compari‐
sons between A and B are changing because A is getting worse or because B is getting
better—or indeed, if both are getting dramatically worse in lockstep. A stable baseline
is a model C that is not influenced by either A or B, and is allowed to serve a certain
amount of traffic so that we can use those results as a comparison. The basic idea is
to then look at (A-C) against (B-C) rather than A against B directly, with the idea that
this will allow us to see any changes more clearly.

The four general strategies for creating stable baselines have different advantages and
disadvantages:

Fallback strategy as baseline
When we have a reasonable fallback strategy that does not involve continuous
retraining, this is useful not only for crisis response but also as a potential
independent datapoint. This can work well if the quality of the fallback strategy
is not too much worse than the main production model. If the difference is very
large, however, statistical noise may overwhelm any comparisons between A and
B using this as a reference point.

Stop trainer
If we have a copy of our production model B and halt training on it, then by
definition it will not be influenced by any future behavior of A or B. If we allow it
to serve a small amount of traffic, this can provide a useful stable baseline C, with
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the caveat that the overall performance of a “stop trainer” model will degrade
slowly over time. It can be useful to run independent experiments to observe how
much degradation can be expected and whether this strategy will be useful.

Delay trainer
If we expect our overall launch process to take, say, two weeks, then a reasonable
alternative can be to run a copy of our production model that is set to update
continuously, but at a two-week delay. This has the advantage over the stop
trainer in that the relative performance is unlikely to degrade, with the drawback
that after it has been running for a length of time equal to its delay, it will begin
to become influenced by A and B and will lose its utility. Thus, a two-week delay
trainer model will become useless after two weeks.

Parallel universe model
An approach that maintains strict independence from A and B but does not have
a limited shelf life is a parallel universe model that is allowed to serve a small
fraction of overall data and learns only on the data that it serves itself. A and B do
not train on this data, keeping these data universes completely separate.

Why is this useful? Imagine that the act of putting B into production changes the
overall ecosystem in some way. We could imagine stock prediction market models
operating this way—perhaps pushing the overall market up or down in some special
cases. In this case, both A and B might end up strongly increasing or decreasing
their median predictions, but the difference A-B might be small and appear stable.
Having this third point C allows us to detect whether the changes between models are
isolated to differences in A and B themselves, or are due to a broader impact.

Parallel universe models often take time to stabilize after being set up because of the
restricted amount of training data and the overall distribution shift. But after this
initial period, they can provide a useful independent evaluation point—again, up to
the limits of statistical noise when comparing evaluation metrics.

Models Must Be Managed Rather Than Shipped
Overall, model launches require particular care because at these times our systems
are most vulnerable to crisis. If we are in a model launch process with A and B
both serving roughly half the traffic, we have just doubled the potential sources
of error and doubled the amount of work needed to address any emergency that
may arise. Like crisis response, model launches are done best when they rely on
well-communicated, well-practiced processes.

Some products are like brick walls: they take a lot of planning and effort to get
right, but once completed are more or less done and require only occasional mainte‐
nance. The default state is that they just work. Continuous ML systems are at the
opposite end of the spectrum and require daily attention. Problems that arise with a
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continuous ML model may be difficult to solve in a complete or permanent way. For
example, if one of our overall product issues is that we would like to do a better job
of recommending wool products to users in warm climates, this is one that is likely to
require a variety of approaches, and the utility of those approaches may change over
time as tastes and fashions adapt season to season and year to year.

In this way, a continuous ML system is something that requires regular management.
Managing a model effectively requires daily access to metrics that report the model’s
predictive performance. This can be done through dashboards and related tooling
that allow a model manager to understand how things look today, how trends might
be changing, and where problems might be arising. Any dashboard’s utility is upper
bound by the amount of attention paid to it, so there needs to be a clear owner who
regularly spends time with it. A useful metaphor is that it is useful to have a cup of
coffee with our model every day, just to get to know it by working with a dashboard
to understand how it is doing that day. And just as a people manager provides regular
performance evaluation, a model owner should provide regular reports about model
performance to upper levels of the organization to share knowledge and visibility.

When we learn something useful about our model, a strong best practice is to write it
down in the form of a short writeup. A writeup, which can be just a few paragraphs
accompanied by a screenshot of a dashboard or similar supporting evidence, can help
build organizational knowledge, and is of the most benefit when the observation is
accompanied by a short summary about what it means about model behavior. Such
writeups have historically proven extremely useful, both for helping guide future
model development and for understanding and debugging unexpected behaviors
seen during crises.

Lastly, when we do encounter a crisis, it is important that organizationally we extract
as much learning from the experience as possible by creating postmortem documents
that describe in detail what happened, how the issue was diagnosed, what the damage
was, what mitigation strategies were applied and how successful they were, and finally
recommendations for how to make improvements to either reduce recurrence of the
issue or enable more effective response in the future. Creating these postmortem
documents is useful both in the short term to help identify fixes, but also in the
long term as a repository of organizational knowledge and experience that can be
referenced over time.

Continuous Organizations
At this point, it should be clear that an organization that is taking on a continuous
ML system is committing to a long-term responsibility. Like a puppy, a continuous
ML system requires daily attention, care, feeding, and training. Structuring our
organizations to be well equipped to handle the responsibilities of managing a con‐
tinuous ML system requires numerous structures to do well.
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Determining evaluation strategies is a key leadership responsibility. Evaluation strate‐
gies allow us to assess the health and quality of our models, both in terms of
long-term business goals and short-term decisions, such as whether to include or
exclude a given feature from the model. As noted in Chapter 9, it can be tempting
to reduce this problem to determining metrics, but a given metric (such as revenue,
clicks, precision, recall, or even latency) is meaningless without a reference point,
baseline, or distribution. Decision making in continuous ML settings often requires
some amount of counterfactual reasoning, thinking through the impact of feedback
loops, or wrestling with noise and uncertainty that makes effective decision making
challenging. We can help reduce the difficulty of these challenges to some degree
by having clearly defined and documented standards and processes in place for
evaluation.

Organizationally, making investment decisions is similarly challenging. How much
should we invest in more compute to create a larger and potentially more powerful
model, and will that investment pay for itself in terms of improved product outcomes
relative to opportunity cost? How should we trade off investing in model quality
improvements versus ML system-level reliability? Organizationally, how do we direct
the time and effort of our constrained human experts to best benefit the overall
mission? These are fundamentally hard problems, in no small part because different
parts of our organization may have different or even incompatible viewpoints on
priorities.

We have two main strategies available for dealing with these kinds of issues. The first
is to ensure that we have organizational leadership with enough scope and context
to effectively weigh the differing needs of, for example, improving model monitoring
and crisis response handling with that of improving model accuracy. Ensuring that
the lessons learned from each part of the organization are well communicated across
the entire organization can be one way to help different parts of an organization
understand one another’s challenges and pain points. This is best done by regularly
sharing postmortems from incidents—and also by proactive “pre-mortem” discus‐
sions identifying potential weaknesses and failure modes. The second strategy is to
invest in infrastructure that ensures that alerts and other warnings are propagated
well in the full chains of producers and consumers. This can require a serious
organizational commitment, but can also pay off over time in terms of reducing the
human burden of verification within complex systems.

Organizationally, understanding that a continuous ML system relies on a steady
stream of incoming data to determine system behavior makes clear that the data
pipeline itself requires serious, dedicated oversight and management. In addition to
simply ensuring that data is flowing and the pipeline is functioning well, key ques‐
tions around which kinds of data to collect, how long to store data, and how our data
pipelines should interact with upstream producers and downstream consumers are
all critical strategic questions for organizational leaders to address. Deeper questions
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of privacy, ethics, data inclusivity, and fairness all also play important roles and must
be part of the overall organizational strategy.

As we’ve noted, the launch process for ML systems and further improvements neces‐
sarily requires a staged ramp-up procedure in the continuous ML setting. A critical
role of leadership is providing the oversight and review for the results of each stage,
and making approval decisions to move to the next stage or determining that we
are not yet ready to proceed or must even ramp down if things are not looking
as intended. These decisions require high-level oversight because the consequences
can be far reaching and interactions can occur with multiple producer or consumer
systems, especially in the presence of feedback loops or other complex system-to-
system interaction points. The process for assessing the wider impact of various
launch stages and ensuring stability before proceeding must be well established and
rigorously followed for a continuous ML organization to be effective in the long run.

Finally, when incidents or crisis moments occur, we need to have a process in place
for responding effectively. For continuous ML systems, we have an advantage and a
disadvantage in handling incidents. The advantage is that we almost always have a
slightly (or somewhat) older version of the current model that we can roll back to
in serving while we take a look at what went wrong. This can be incredibly helpful
when we need a quick mitigation for something that went disastrously wrong with
the current model. The disadvantage is that the entire system is constantly evolving,
making it difficult to isolate root causes or breaking changes. Our model’s change
might have been motivated or required by other concurrent changes in the system
(such as new data added, or new integrations using the model). In this context,
troubleshooting exactly what has gone wrong can be much more difficult in a contin‐
uous ML environment. For concrete examples of this, see Chapter 11.

The most important prework for an organization running a continuous ML system is
to pre-negotiate outage consequences and handling. This goes beyond just determin‐
ing, in advance, who will fill which roles—although you need to do that too. ML
production engineers shouldn’t be determining the urgency of resolving a particular
incident while in the middle of it, and model developers shouldn’t be guessing at the
costs and consequences of a given outage while it is ongoing. Each person should
know their role, their authority, and their path to escalate a decision to someone
else because these should be worked out in advance. But where possible, the whole
organization should also have agreed upon some general service reliability standards.
Examples might be the following:

• This model can be up to 12 hours old without serious consequences, even though•
we generally prefer that it be based on data that is no more than about 1 hour old.

• If this model has quality metrics worse than a particular known threshold, the•
approved fallback is to roll back to an old model.
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• If the model is worse than an additional threshold that is predetermined, waking•
up the following business leaders is appropriate…

And so on. The general idea is to predetermine the parameters of various kinds of
outages so that incident responders have the maximum ability to take action and
minimum latency to a decision about how to respond. Many organizations tend not
to work out these decisions in advance until they experience a few outages, but after
that, it becomes quite reasonable to pre-decide what to do in the case of really bad
ML problems.

Rethinking Noncontinuous ML Systems
We have talked about a range of issues for continuous ML systems in this chapter.
But in addition to giving what we hope are useful mitigation strategies for creating
robust and reliable systems even in the face of the difficulties, we would like to make
a broader recommendation:

All production ML systems should be treated as continuous ML systems.

We should think about every model that is a key part of a production system as
one that is trained continuously, even if it is not actually updated on new data every
minute, every hour, or even every day or week.

Why would we make such a recommendation? After all, continuous ML systems are
full of complexity and vectors for failure. One reason is that if we apply the standards
and best practices from continuous ML systems to all production-grade ML systems,
we will definitely be ensuring that our technical infrastructure, model development,
and MLOps or crisis response teams are set up to meet challenges as they arise. If we
assume that our ML system is a continuous ML system and plan accordingly, we will
be in a good spot.

Is this overkill? If a model is trained only once, applying the standards and best
practices from continuous ML may be seen as a waste of resources. But in reality,
no production models are trained only once. In our experience, we have seen that
every production-level ML model will eventually be retrained or have a new version
launched—maybe in a few months, or next year, as new data becomes available or
models are developed. This can be done in an ad hoc fashion, every few weeks or
months, but this irregular approach is likely to lead to failures and oversights. Our
strong recommendation is that effective MLOps teams ensure that their models are
updated on a regular schedule, be it daily, weekly, or monthly, so that validation
procedures and checklists can become part of the organizational culture. From this
standpoint, then, the recommendations for continuous ML systems are applicable to
every ML system.
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Conclusion
In this chapter, we have laid out sets of procedures and practices that can form
the foundation of an organizational playbook for the ongoing care and oversight of
continuous ML systems. These systems offer a remarkable range of benefits, enabling
models that adapt to new data over time and allow for responsive learned systems
that interact with users, marketplaces, environments, and the world.

It is obvious that any system that is both highly impactful and easily influenced
requires considerable oversight. In our experience, the requirements for oversight in
these cases go far beyond what can be expected of any individual, no matter how
capable, and cannot be left to intuition or improvisation. Any organization managing
a continuous ML system needs to think of this as an ongoing high-priority mission,
with special care at times of launches or major updates, but also with continual
monitoring and contingencies in place to allow fast response to emergent crises.

We covered six basic insights about continuous ML systems that we hope you will
come away with:

• External world events may influence our systems.•
• Models may influence their own future training data through feedback loops.•
• Temporal effects can arise at several timescales.•
• Crisis response must be done in real time.•
• New launches require staged ramp-ups and stable baselines.•
• Models must be managed rather than shipped.•

And finally, we ended the chapter with the idea that all ML systems should likely best
be thought of as continuous ML systems, as all models are eventually retrained, and
having strong standards in place will benefit any organization in the long run.
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1 If you’re looking for detailed coverage of general incident management, you may consider instead reviewing
Site Reliability Engineering and the PagerDuty incident response handbook.

CHAPTER 11

Incident Response

In this world, sometimes bad things happen, even to good data and systems. Disks
fail. Files get corrupted. Machines break. Networks go down. API calls return errors.
Data gets stuck or changes subtly. Models that were once accurate and representative
models become less so. The world can also change around us: things that never,
or almost never, previously happened can become commonplace; this itself has an
impact on our models.

Much of this book is about building ML systems that prevent these things from
happening, or when they happen—and they will—recognizing the situation correctly
and mitigating it. Specifically, this chapter is about how to respond when bad, urgent
things happen to ML systems. You may already be familiar with how teams handle
systems going down or otherwise having a problem: this is known as incident man‐
agement, and best practices exist for managing incidents that are common across lots
of computer systems.1

We cover these generally applicable practices, but our focus is on how to manage
outages for ML systems, and in particular how those outages and their management
differ from other distributed computing system outages.

The main thing to remember is that ML systems have attributes that make resolving
their incidents potentially very different from the incidents of non-ML production
systems. The most important attribute in this context is their strong connection
to real-world situations and user behavior. This means that we can see unintuitive
effects where there is a disconnect among the ML system, the world, or the user
behavior we are trying to model. We cover this in detail later, but the major thing
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2 See Chapter 14 of Site Reliability Engineering for more details.

to understand now is that troubleshooting ML incidents can involve very much
more of the organization than standard production incidents do, including finance,
supplier and vendor management, PR, legal, and so on. ML incident resolution is not
necessarily something that only engineering does.

A final serious point we would like to make here at the beginning is that, as with
other aspects of ML systems, incident management has serious implications for ethics
in general and very commonly for privacy. It is a mistake to focus on getting the
system working first and worry about privacy afterward. Do not lose sight of this
critical part of our work in this section. Privacy and ethics will make an appearance
in several parts of the chapter and are addressed directly toward the end because by
then we will be in a better place to draw some clear conclusions about how ML ethics
principles interact with incident management.

Incident Management Basics
Three basic concepts for successful incident management are knowing the state the
incident is in, establishing the roles, and recording information for follow-up. Many
incidents are prolonged because of failures to identify what state the incident is in,
and who is responsible for managing which aspects of it. If this continues for long
enough, you have an unmanaged incident, which is the worst kind of incident.2

Indeed, if you’ve worked with incidents for long enough, you’ve probably seen one
already, and it probably starts something like this: an engineer becomes aware of a
problem; they troubleshoot the problem alone, hoping to figure out the cause; they
fail to assess the impact of the problem on end users; and they don’t communicate
the state of the problem, either to other members of their team or the rest of the
organization. The troubleshooting itself is typically disorganized and characterized
by delays between actions, and assessing what happened after the actions. Once the
initial troubleshooters realize the scope of the incident, even more delays may arise
while they try to figure out which other teams need to be involved and send pages
or alerts to track them down. If the problem continues indefinitely, other parts of
the organization can notice that something is wrong and independently (sometimes
counterproductively) take uncoordinated steps to resolve the problem.

The key idea here is to actually have a process—a well-rehearsed one—and to apply
it reliably and methodically when something bad that’s happened is worthy of being
called an incident. Of course, creating a managed incident has a cost, and formalizing
communications, behavior, and follow-up incurs overhead. So we don’t do it for
everything; not every WARNING in our logs warrants a couple of hours of meetings or
phone calls. Being an effective on-call engineer requires developing a sense for what
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is serious and what isn’t, and smoothly engaging incident machinery when required.
It is enormously helpful to have clearly defined guidelines ahead of time about when
to declare an incident, how to manage it, and how to follow up after it.

Life of an Incident
Incidents have distinct phases of their existence. Although people of good will may
differ on the specifics, incidents probably include states such as the following:

Pre-incident
Architectural and structural decisions that set the conditions for the outage.

Trigger
Something happens to create the user-facing impact.

Outage begins
Our service is affected in a noticeable way by at least some users for at least some
functions.

Detection
The owners of the service become aware of the problem, either through automa‐
ted monitoring notifying us or outside users complaining.

Troubleshooting
We try to figure out what is going on and devise a means of fixing the problem.

Mitigation
We identify the fastest and least risky steps to prevent at least the worst of the
problems. This can range from something as mild as posting a notice that some
things don’t work right all the way to completely disabling our service.

Resolution
We fix the underlying problem and the service returns to normal.

Follow-up
We conduct a retrospective, learn what we can about the outage, identify a series
of things we’d like to fix or other actions we would like to take, and then carry
those out.

Computer system outages can roughly be described by these phases. We’ll briefly
cover the roles in a typical incident and then will try to understand what differs in
handling an ML incident.
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Incident Response Roles
Some companies have thousands of engineers working on systems infrastructure, and
others might be lucky to have a single person. But whether your organization is large
or small, the roles described in this section need to be filled.

It’s important to note that not all of the roles must be filled by a separate person, since
not all of the responsibilities are equally urgent, and not all incidents demand isolated
focus. Also, your organization and your team has a particular size—not every team
can fill every position directly. Furthermore, certain problems emerge only at scale:
communication costs, in particular, tend to increase in larger organizations, often
correlated with the complexity of infrastructure under management. Conversely,
smaller engineering teams can suffer from tunnel vision and a lack of diversity of
experience. Nothing in our guidance frees you of the necessity of adapting to the
situation, and making the right choices—often by first making the wrong ones. But
one critical fact is that you must plan ahead for the organizational capacity to prop‐
erly support incident management duties. If they are a poorly staffed afterthought or
you assume anyone can jump in when incidents occur with no structure, training, or
spare time, the results can be quite bad.

The framework we are most familiar with for incident management derives from the
US Federal Emergency Management Agency (FEMA) National Incident Management
System. In this framework, the minimum viable set of roles is typically as follows:

Incident commander
A coordinator who has a clear understanding, at a high level, of the incident as a
whole, and is responsible for assigning and monitoring the other roles.

Communications lead
Responsible for outbound and inbound communication. The actual responsibili‐
ties for this role differ significantly based on the system but may include updating
public documents for end users, contacting other internal services groups and
asking for help, or answering queries from customer-facing support personnel.

Operations lead
Approves, schedules, and records all production changes related to the outage
(including stopping previously scheduled production changes on the same sys‐
tems even if unrelated to the outage).

Planning lead
Keeps track of longer-term items that should not be lost but do not impact
immediate outage resolution. This includes recording work items to be fixed,
storing logs to be analyzed, and scheduling time to review the incident in the
future. (Where applicable, the planning lead should also order dinner for the
team.)
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These roles are invariant, whether or not you are dealing with an ML incident. The
things that do vary are listed here:

Detection
ML systems are less deterministic than non-ML systems. As a result, it is harder
to write monitoring rules to catch all incidents before a human user detects them.

Roles and systems involved in resolution
ML incidents usually involve a broader range of staff during troubleshooting and
resolution, including business/product and management/leadership. ML systems
have a broad impact on multiple systems, and are generally built on and fed by
multiple complex systems. This leads to a likely diverse set of stakeholders for
any incident. ML outages often impact multiple systems because of their role in
integrating with and modifying other parts of your infrastructure.

Unclear timeline/resolution
Many ML incidents involve impact to quality metrics that themselves already
vary over time. This makes the timeline of the incident and the resolution more
difficult to specify precisely.

To develop a more intuitive and concrete understanding of why these differences
show up in this context, let’s consider a few example outages of ML systems.

Anatomy of an ML-Centric Outage
These examples are drawn from real experiences by the authors but do not corre‐
spond to individual, specific examples that we have participated in. Nonetheless,
our hope is that many people with experience running ML systems will see familiar
characteristics in at least one of these examples.

As you read through them, play close attention to some of the following characteris‐
tics that may differ substantially from other kinds of outages:

Architecture and underlying conditions
What decisions did we make about the system before this point that could have
played a role in the incident?

Impact start
How do we determine the start of the incident?

Detection
How easy is it to detect the incident? How do we do it?

Troubleshooting and investigation
Who is involved? What roles do they play in our organization?
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Impact
What is the “cost” of the outage to our users? How do we measure that?

Resolution
How confident are we in the resolution?

Follow-up
Can we distinguish between fixing and improving? How do we know when the
follow-up from the incident is done and prospective engineering is taking place?

Keep these questions in mind while you consider the stories presented later in this
chapter.

Terminology Reminder: Model
In Chapter 3, we introduced distinctions among the following:

Model architecture
The general approach to learning

Model (or configured model)
The specific configuration of an individual model plus the learning environment,
and the structure of the data we will train on

Trained model
A specific instance of one configured model trained on one set of data at a point
in time

This distinction matters particularly because we often care about which of these has
changed, to possibly be implicated in an incident. We will try to be clear in the
following sections which we’re referring to.

Story Time
We tell the following stories within the framework of our invented firm, YarnIt, in
order to help them resonate with you. But they are all based on, or at least inspired
by, real events that we’ve observed in production. In some cases, they are based on a
single outage at a single time, and in others they are composites.

Story 1: Searching but Not Finding
One of the main ML models that YarnIt uses is a search ranking model. Like most
web stores, customers come to the site and click links offered to them on the front
page, but they also search directly for the products they’re looking for. To generate
those search results, we first filter our product database for all of the products that
roughly match the words that the customer is looking for, and then rank them with
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an ML model that tries to predict how to order those results, given everything we
know about the search at the time it’s performed.

Ariel, a production engineer who works on search system reliability, is working on
the backlog of monitoring ideas. One of the things the search team has been wishing
it monitored and trended over time is the rate that a user clicks one of the first five
links in a search result. The team members hypothesize that that might be a good way
to see whether the ranking system is working optimally.

Ariel looks through the available logs and determines an approach for exposing the
resulting metric. After doing a week-on-week report for the past 12 weeks to make
sure that the numbers look reasonable, Ariel finds some initially promising results.
From 12 weeks ago to 3 weeks ago, Ariel sees that the top five links are clicked by
customers around 62% of the time. Of course, that could be better, but a substantial
majority of the time we’re finding something that the users are curious about within
the first few results.

Three weeks ago, however, the click rate on the first five links started going down. In
fact, this week it’s only 54%, and Ariel notes that it appears to still be dropping. That’s
a huge drop in a very short period of time. Ariel suspects that the new dashboard is
flawed and asks the search reliability team to take a look. Instead, the team confirms:
the data looks correct, and those numbers are really concerning!

Detection has occurred.

Ariel declares an incident and notifies the search model team since it might be a
problem with the model. Ariel also notifies the retail team, just to check that we’re
not suddenly making less money from customers who are searching for products (as
opposed to browsing for them) and also asks the team to check for recent changes to
the website that would change the way results are rendered. Ariel then digs into the
infrastructure for the search reliability team itself: what has changed on its end? Ariel
finds—and the search model team confirms—that no changes have been made to the
model configuration in the past two months. There have also been no big changes in
the data or accompanying metadata used by the model—just the normal addition of
customer activity to the logs.

Instead, one of the search model team members notes something interesting: they
use a golden set of queries to test new models daily, and they’ve noticed that in the
past three weeks the golden set is producing incredibly consistent results—consistent
enough to be suspicious. The search model is normally updated daily by retraining
the same model on searches and resulting clicks from the previous day. This helps
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keep the model updated with new preferences and new products. It also tends to
produce a little instability in the results from the golden set of queries, though that
instability is normally within reasonable bounds. But starting three weeks ago, those
results became remarkably stable.

Ariel goes to look at the trained model deployed in production. It’s three weeks old,
and has not been updated since that point. This explains the stability of the golden
queries. It also explains the drop-off in user click behavior: we’re probably showing
fewer good results on new preferences and new products. Indefinitely, of course—if
we keep the same, stale model, we’ll eventually be unable to correctly recommend
anything new. So Ariel looks at the search model training system, which schedules
the search model training every night. It has not completed a training run in over
three weeks, which would definitely explain why there isn’t a new trained model in
production.

We have a proximal cause for the outage, but at this point we
don’t know the underlying cause, and there’s no obvious simple
mitigation: without a new trained model in production, we cannot
improve the situation. This is also a very rough proximal start of
impact.

The training system is distributed. A scheduler loads a set of processes to store the
state of the model, and another set of processes to read the last day’s search logs and
update the model with the new expressed preferences of the users. Ariel notes that all
of the processes trying to read logs from the search system are spending most of their
time waiting for those logs to be returned from the logging system.

The logging system accesses raw customer logs via a set of processes called log feeders
that have permission to read the relevant parts of the logs. Looking at those log-feeder
processes, Ariel notices a group of 10 of them and sees that each is crashing and
exiting every few minutes. Diving into process crash logs, Ariel sees that the log
feeders are running out of memory, and when they can’t allocate more memory, they
crash. When they crash, a new log-feeder process is started on a new machine, and
the training process retries its connection, reads a few bytes, and then that process
runs out of memory and crashes again. This has been going on for three weeks.

Ariel proposes that they try increasing the number of log-feeder processes from 10
to 20. Spreading the load from the training jobs around might prevent the jobs from
crashing. They can also look at allocating more memory to the jobs if needed. The
team agrees, Ariel makes the change, the log-feeder jobs stop crashing, and the search
training run completes a few hours later.
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The outage is mitigated as soon as the training run completes and
the new trained model is put into production.

Ariel works with the team to double-check that the new trained model loads auto‐
matically into the serving system. The query golden set performs differently than the
one from three weeks ago but performs acceptably well. Then they all wait a few
hours to accumulate enough logs to generate the data they need to make sure that the
updated trained model is really performing well for customers. Later, they analyze the
logs and see that the click-through rate in the first five results is now back to where it
should be.

At this point, the outage is resolved. Sometimes there is no obvious
mitigation stage, and mitigation and resolution take place at the
same time.

Ariel and the team work on a review of the incident, accumulating some post-outage
work they’d like to perform, including the following:

• Monitor the age of the model in serving and alert if it’s over a certain threshold•
of hours old. “Age” here might be wall-clock age (literally, the timestamp on the
file) or data age (how old the data is that the model is based on). Both of these are
mechanically measurable.

• Determine our requirements for having a fresh model and then distribute the•
available time to the subcomponents of the training process. For example, if we
need to get a model updated in production every 48 hours at the most, we might
give ourselves 12 hours or so to troubleshoot problems and train a new model,
so then we can allocate the remainder of the 36 hours to the log processing,
log-feeding, training, evaluation, and copying to serving portions of the pipeline.

• Monitor the golden query test and alert if it is unchanged as well as if it’s changed•
too much.

• Monitor the training system training rate and alert if it falls below a reasonable•
threshold such that we predict we will miss our deadline for training completion
based on the allocated amount of time. Selecting what to monitor is difficult, and
setting thresholds for those variables is even harder. This is covered briefly in
“ML Incident Management Principles” on page 274, and covered previously in
Chapter 9.

• Finally, and most importantly: monitor the top-five-results click-through rate•
and alert if it falls below a certain threshold. This should catch any problem
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that affects the quality as perceived by users, but not caught by any of the other
causes. Ideally, the metric for this should be available at least hourly so that we
can use it while troubleshooting future problems, even if it’s stable on only a
day-by-day basis.

With those follow-up items scheduled, Ariel is ready for a break.

Stages of ML incident response for story 1
This outage, although quite simple in cause, can help us start to see the way that
ML incidents manifest somewhat differently for some phases of the incident response
lifecycle:

Pre-incident
The training and serving system was a somewhat typical structure, with one
system producing a trained model and periodically updating it, and another
using that model to answer queries. This architecture can be very resilient, since
the live customer-facing system is insulated from the learning system. When it
fails, it is often because the model in serving is not updated. The underlying log
data is also abstracted away in a clean fashion that protects the logs but still lets
the training system learn on them. But this interface to the logs is precisely where
the weakness in our system occurred.

Trigger
Distributed systems often fail when they pass a particular threshold of scaling
that sharply reduces performance, sometimes referred to as a bottleneck. In this
case, we passed the threshold of performance of our log-feeder deployment and
did not notice. The trigger was the simple growth of the data, corresponding
growth of the training system requirements, and the business need to consume
that data.

Outage begins
The outage begins three weeks before we notice it. This is unfortunate, and why
good monitoring is so important.

Detection
ML systems that are not well instrumented often manifest systems problems as
only quality problems—they simply start performing less well and get gradually
worse over time. Model quality changes are often the only end-to-end signal that
something is wrong with the system infrastructure.

Troubleshooting
ML troubleshooting often involves a broader set of teams than some other
kinds of outages, precisely because they often manifest as publicly visible quality
problems. Until the problem can be narrowed down, it’s prudent not to make
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3 This drift, as well as the contents of the golden set, are also key places where unfair bias can become a factor
for our system. See Chapter 6 for a discussion of these topics at more length.

4 This kind of restriction on data commingling is somewhat common. Companies are sensitive about their
commercially valuable data (for example, who bought X after searching for Y) being used to benefit their
competitors. In this case, these companies may even regard YarnIt as a competitor (although one who sends
them significant business that they value).

assumptions about the kind of outage we’re experiencing—it could be a systems
problem, a model problem, or just a drift in our ability to correctly predict
the world.3 Sometimes it’s the world changing faster than we can keep up with—
more on this in story 3. Not all quality degradations are even outages. Future
stories will show a yet broader cast of characters involved in troubleshooting.

Mitigation/resolution
The fastest and least risky steps to mitigate the problem, in this case, involved
training a new model and successfully deploying it to our production search
serving system. For ML systems, especially those that train on lots of data or that
produce large models, no such quick resolution might be available.

Follow-up
We can add a rich set of monitoring here, much of which is not easy to imple‐
ment but will benefit us during future incidents.

This first story shows a fairly simple ML-associated outage. We can see that outages
can present as quality problems of models not quite doing what we expect or need
them to do. We can also start to see the pattern of broad organizational coordination
that is required in many cases for resolution. Finally, we can see that it is tempting to
be ambitious in specifying the follow-up work. Keeping these three themes in mind,
let’s consider another outage.

Story 2: Suddenly Useless Partners
At YarnIt, we have two types of business. The first part of our business is a first-party
store selling knitting and crocheting products. But we also have a marketplace for
recommending products from other partners who sell them through our store. This
is a way that we can make a wider variety of products available to our customers
without having to invest more in inventory or marketing.

When and how to recommend these marketplace products is a little tricky. We need
to incorporate them into our search results and discovery tools on the website as a
baseline, but how should we make recommendations? The simplest approach would
be to list every product in our product database, include all actions that touch them
in our logs, and add them to our main prediction model. A notable constraint is
that each of these partners requires that we separate their data from every other
partner; otherwise, they won’t let us list their products.4 As a result, we’ll have to
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train a separate model per partner, and extract partner-specific data into isolated
repositories, though we can still have a common feature store for shared data.

YarnIt is ambitious enough to plan for a potentially very large number of partners—
somewhere between five thousand or five million—and so instead of a setup opti‐
mized for a few large models, we need a setup optimized for thousands of tiny
models. As a result, we built a system that extracts historical data from each partner
and puts it into a separate directory or small feature store. Then at the end of
every day, we separate out the previous day’s deltas and add them to our stores just
before starting training. Now our main models train quickly, and our smaller partner
models train quickly as well. Best of all, we’re compliant with the access protection
demanded by our partners.

The pre-incident is complete at this point. The stage is set, and the
conditions for the outage have been set. It may be obvious by this
point that several opportunities exist for things to go wrong.

Sam, a production engineer at YarnIt, works on the partner training system. Sam
is asked to produce a report for CrochetStuff, a partner, in advance of a business
meeting. While preparing the report, Sam notices that the partner in question has
zero recent conversions (sales) recorded in the ML training data but that the account‐
ing system reports that it’s selling products every day. Sam produces a report and
forwards it to colleagues who work on the data extraction and joining jobs for some
advice. In the meantime, Sam leaves this fact off the report on data to the partner
team and simply includes the sales data.

The detection happens here. No computer system detected the out‐
age, which means that it may have been going on for an indefinite
amount of time.

Data discrepancies in counts like this happen all the time, so the data extraction team
does not treat Sam’s report as a high priority. Sam is reporting a single discrepancy for
a single partner, and the team files a bug and plans to get to it in the coming week or
so.

The incident is unmanaged and continuing chaotically. It might
be small, or it might not. No one has determined the extent of
the impact of the data problem yet, and no one is responsible for
coordinating a quick and focused response to it.
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5 This is a risky way to test this hypothesis. It would have been better to roll out a single model first to validate
that the old models performed better and didn’t have another catastrophic problem. But this is a defensible
choice that people make during high-stakes outages.

At the business meeting, CrochetStuff notes that its sales are down 40% week-on-
week and continuing to drop daily. Their reports on page views, recommendations,
and user inquiries are all down, even though when users do find the products, the
rate at which they purchase continues to be high. CrochetStuff demands to know why
YarnIt suddenly stopped recommending all of its products!

By this point, we have had internal detection, an internal partner
advocate, customer reports, and a possible lead of what is happen‐
ing. This is a lot of noise, but sometimes we don’t declare an
incident until many people independently notice it.

Sam declares an incident and starts working on the problem. The logs of the partner
model training system clearly report that the partner models are successfully training
every day, and there are no recent changes to either the binaries that carry out
the training or the structure and features of the models themselves. Looking at the
metrics coming from the models, Sam can see that the predicted value of every
product in the CrochetStuff catalog has declined significantly every day for the past
two weeks. Sam looks at other partners’ results and sees exactly the same drop.

Sam brings in the ML engineers who built the model to troubleshoot what is happen‐
ing. They double-check that nothing has changed and then do some aggregate checks
on the underlying data. One of the things they notice is what Sam noticed originally:
there are no sales for any partners in the last two weeks in the ML training data. The
data all comes from our main logs system and is extracted every day to be joined with
the historical data we have for each partner. The data extraction team resurrects Sam’s
bug from a few days before and starts looking at it.

Sam, who needs to find a fast mitigation for the problem, notes that the team
stores older copies of trained models for as long as several months. Sam asks the
ML engineers about the consequences of just loading an old model into serving for
now. The team confirms that while the old trained model versions won’t have any
information about new products or big changes in consumer behavior, they will have
the expected recommendation behavior for all existing products. Since the scope of
the outage is so significant, the partner team decides it is worth the risk to roll back
the models. In consultation with the partner team, Sam rolls back all of the partner
trained models to versions that were created two weeks earlier, since that seems to
be before the impact of the outage began. The ML engineers do a quick check of
aggregate metrics on the old models and confirm that recommendations should be
back to where they were two weeks ago.5
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At this point, the outage is mitigated but not really resolved. Things
are in a pretty unstable state—notably, we cannot build a new
model with our accustomed process and have it work well—and
we still need to figure out the best full resolution as well as how to
avoid getting ourselves into this situation again.

While Sam has been mitigating, the data extraction team has been investigating. It
finds that while the extractions are working well, the process that merges extracted
data into the existing data is consistently finding no merges possible for any partners.
This appears to have started about two weeks ago. Further investigation reveals that
two weeks ago, in order to facilitate other data analysis projects, the data management
team changed the unique partner key, used to identify each partner in its log entries.
This new unique key was included in the extracted data, and because it differed from
previous partner identifiers, the newly extracted logs could not be merged with any
data extracted prior to the key being added.

This is now a reasonable root cause for the outage.

Sam requests that a single partner’s data be re-extracted and that a model be trained
on the new data in order to quickly verify that the system will work correctly end to
end. Once this is done, Sam and the team are able to verify that the newly extracted
data contains the expected number of conversions and that the models are now,
again, predicting that these products are good recommendations for many customers.
Sam and the data extraction engineers do some quick estimations on how long it will
take to re-extract all of the data, and Sam then consults with the ML engineers on
how long it will take to retrain all of the models. They arrive at a collective estimate
of 72 hours, during which they will continue to serve recommendations from the
stale model versions that they restored from two weeks prior. After consulting with
the retail product and business team, they all decide to carry out this approach. The
partner team drafts some mail to partners to let them know about the problem and a
timeline for resolution.

Sam requests that all partner data be re-extracted and that all partner models be
retrained, preferably from scratch, starting with the beginning of data we have. They
monitor the process for three days, and once it is done, verify that the new models are
recommending not only the older products but also newer products that didn’t exist
two weeks prior. After careful checking, the new models are deemed to be good by
the ML engineers and are put into production. Serving results are carefully checked,
along with many folks doing live searches and browsing to verify that partner listings
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are actually showing up as expected. Finally, the outage is declared closed, and the
partner team drafts an update to partners letting them know.

At this point, the outage is resolved.

Sam brings the team together to go over the outage and file some follow-up bugs
so that they can avoid this kind of outage in the future and detect it more quickly
than they did this time. The team considers rearchitecting the whole system so that
they can eliminate the problem of having two copies of all of the data, with slightly
different uses and constraints, but decides that they still don’t have a good idea about
how to meet their performance goals for both systems if they are unified.

They do file a set of bugs related to monitoring the success of data extraction, data
copying, and data merging. The biggest problem is that they don’t have a good source
of truth for the question, how many lines of data should be merged? This failure
happened for an entire class of logs, and the team was quickly able to add an alert for
“log lines merged must be greater than zero.” But during the investigation, a series of
less catastrophic failures were also found, and to catch those, we would need to know
the expected number of logs per partner to be merged and then the actual number
that were merged.

The data extraction team settles on a strategy of storing the count of merged log lines
by partner by day and comparing today’s successes to the trailing average of the last
n days. This will work relatively well when partners are stable but will be noisy when
they experience big changes in popularity.

Two years later, this alerting strategy is still unimplemented as a result of challenges
in implementing it without unnecessary noise. The strategy may be a good idea but,
given the dynamic retail environment, has proven unworkable, and the team still
lacks good end-to-end rapid detection of this kind of log extraction and merging
failure, except in the catastrophic case. However, a heuristic they did implement a few
months in—a hook that triggers on any relevant change to the partner configurations
and notifies an engineer to potentially expect breakage—has at least increased ongo‐
ing awareness of such a change as a potential trigger for outages.

Stages of ML incident response for story 2
Many of the characteristic stages that this incident went through are similar to those
of any distributed systems incident. It has prominent differences though, and the
best way to see those with some context and nuance is to walk through the partner
training outage and look at the ML-salient features that occur during each section:
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Pre-incident
Most of what went wrong was already latent in the structure of our system.
We have a system with two authoritative sources for the data, one of which
is an extracted version of the other, with incremental extracts being applied
periodically. ML systems most commonly fail because of problems with data
and metadata. We will dig into the tactics for observing and diagnosing outages
across systems with coupled data and ML in “ML Incident Management Princi‐
ples” on page 274.

Trigger
The data schema was changed. It was changed very far away from where we
observed the problem, which obviously made it difficult to identify. It is impor‐
tant to think about this outage as a way of identifying the assumptions we
have made about our data throughout the processing stack. If we can identify
those assumptions and where they are implemented, we can avoid creating data
processing systems that can be damaged by changes to those assumptions. In this
case, it should have been impossible to change the schema of our main feature
store without also modifying or at least notifying all downstream users of that
feature store. Explicit data schema versioning is one way to achieve this result.

Outage begins
The outage begins when one internal system processing data uses another inter‐
nal system that processes data in a way that is no longer consistent with its
structure. This is a common hazard for any large distributed pipeline system.

Detection
ML systems quite commonly fail in ways that are detected first by end users.
One challenge with this is that ML systems are often accused of failure, or at
least not working as well as we might hope, even under normal operations, and
so it may seem reasonable to disregard the complaints of users and customers.
The primary method of noticing this particular outage is a common one: the
recommendations system wasn’t making recommendations of the same quality
as it used to. With ML system monitoring, keeping the high-level, end-to-end,
coarse-grained picture in mind is particularly useful—with the central question
being, have we substantially changed what the model is predicting over the past
short while? These kinds of end-to-end quality metrics are completely independ‐
ent of the implementation and will detect any kind of outage that substantially
damages models. The challenge will be to filter that signal so that not too many
false positives occur.
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Troubleshooting
Sam needs to work with multiple teams to understand the scope and potential
causes of the outage. We have commercial and product staff (the partner team),
ML engineers who build the model, data extraction engineers who get the data
out of the feature store and logs store and ship it to our partner model training
environment, and production engineers like Sam coordinating the whole effort.
Troubleshooting ML outages really has to start not with the data but with the
outside world: what is our model saying, and why is that wrong? There is
so much data that starting by “just looking through the data” or even “doing
aggregate analysis of the data” is likely to be a long and fruitless search. Start with
the model’s changed or problematic behavior, and it will be much easier to work
backward to why the model is now doing what it is doing.

Mitigation
With some services, it is possible to simply restore an older version of the soft‐
ware while a fix is prepared. While this may inconvenience any users depending
on new features, everyone else can continue unaffected.

ML outages can only sometimes be mitigated by restoring an older version of
the model, because their job is to help computer systems adapt to the world, and
there’s no way to restore a snapshot of the world as it used to be.

Additionally, quickly training up new models often requires more computing
capacity than we have available. As was the case with our partner model outage,
no cost-free quick mitigation exists. To determine which mitigation was the best
option, the decision ultimately needed to be made by the product and business
staff most familiar with our partners, users, and business. This level of escalation
to business leaders happens sometimes for non-ML services but much more
frequently for ML services. Most organizations that rely on ML to run important
parts of their business will need to cultivate technical leaders who understand the
business, and business leaders who understand the technology.

Resolution
Sam makes sure that the data in the partner training system is correct (at least
in aggregate, and spot checks seem to confirm that it looks good). New models
are trained. When we are ready to deploy them, there’s actually no simple way
to determine whether the new models “fix” the problem. The world continues to
change while we are working on resolving this problem. So some previously pop‐
ular products may be less in vogue now. Some neglected products may have been
discovered by our users. We can look at the aggregate metrics to see whether we
are recommending partner products at closer to the rate that we did previously,
but it won’t be identical. Sometimes people use a golden set of queries here to see
if they can produce a “correct” set of recommendations for pre-canned results.
This can increase our confidence somewhat but adds the new problem that we
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6 Incident response has a pair of useful concepts. Recovery point objective (RPO) is the point in time that we are
able to restore the system to full functionality after recovering from the outage, ideally immediately prior to
the outage. Recovery time objective (RTO) is how long it will take to restore the system to functionality from
an outage. ML systems certainly have an RTO; retraining a model, copying an old version—these take time.
But the problem is that most ML systems have no meaningful notion of an RPO. Occasionally, a system runs
entirely in the “past” on preexisting inputs, but most of the time ML systems exist to adapt our responses
to current changes in the world. So the only RPO that matters is “now” for ever-changing values of “now.”
A model trained “a few minutes ago” might be good enough for “now” but might not. This significantly
complicates thinking about resolution.

will want to continuously curate this golden set of queries to be representative of
what our users search for. Once we do that, we will not necessarily have stable
results over very long periods of time.6

Follow-up
After-incident work is always difficult. For a start, the people with direct knowl‐
edge are tired, and may have been neglecting their other work for some time by
this point. We have already paid the price of the outage, so we might as well get
the value for it. While monitoring bugs are typically included in post-incident
follow-up, it is incredibly common for them to languish (in some cases for years)
for ML-based systems. The reason is relatively simple: it is extremely difficult to
monitor real data and real models in a high-signal, low-noise way. Anything that
is overly sensitive will alert all the time—the data is different! But anything that
is overly broad will miss complete outages of subsets of our services. These prob‐
lems exist for most distributed systems but are characteristic for ML systems.

While this outage was technically complex and somewhat subtle in its manifestation,
many ML outages have very simple causes but still show up in difficult-to-correlate
ways.

Story 3: Recommend You Find New Suppliers
We have models for several aspects of our business at YarnIt. The recommendations
model in particular has an important signal: purchases. Simply put, we recommend a
product in every browsing context where users tend to purchase that product when
it is offered to them. This is good for our users, who more quickly find products that
they want to buy, and for YarnIt, which will presumably sell more products more
quickly.

Gabi is a production engineer who works on the discovery modeling system. One
unusually pleasant summer day, Gabi is working through configuration cleanups
that have been lingering and addressing requests from other departments. Customer
support staff sent a note that they have been tracking a theme in feedback on the
website for the past couple of weeks, saying that the recommendations are “weird.”
Subjective impressions like this by some customers are generally pretty hard to take
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any concrete action on, but Gabi files the request into a “pending follow-up” section
for later follow-up.

No spoilers! We definitely cannot say whether incident detection
has happened yet at this point.

Further in the incoming requests, Gabi spots an unusual problem report. The website
payments team tells Gabi that Finance is reporting a big drop in revenue. Revenue
is down 3% for the past month on the site. That might not seem like a big drop,
but after further digging, the team finds that last week versus four weeks ago is
down closer to 15%! The payments team has checked the payment-processing infra‐
structure, and found that customers are paying for carts successfully at the same rate
they historically have. They note, though, that the carts have fewer average products
than they used to, and in particular fewer people are purchasing products from
recommendations than expected. This is why the payments team has contacted Gabi.
Seeing numbers this big, Gabi declares an incident.

Incident detected and declared.

Gabi asks the financial team to double-check the week-versus-four-weeks-ago com‐
parison for the past several weeks, and asks for a more detailed timeline of revenue
for the past several weeks. Finally, Gabi asks for any product, category, or partner
breakdowns available. Gabi then asks the payments team to verify its numbers about
recommendations added to carts as well as to provide any breakdowns it can. In
particular: does the team see a particular type of cart that has fewer recommendations
than others or that has changed more recently?

Meanwhile, Gabi starts looking at aggregate metrics for the application, just trying
to figure out some basic questions. Are we showing recommendations at all? Are we
showing recommendations as often as we have in the past, and for all the queries and
users and products that we did in the past, and in the same proportions across user
subpopulations? Are we generating sales from recommendations at the same rate as
we typically have? Is there anything else salient about the recommendations that is
obviously different?

Gabi also starts doing the normal production investigation, focusing particular atten‐
tion on what changed in the recommendations stack recently. The results are not
promising for finding an obvious culprit: the recommendations models and binaries
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to train the models are unchanged in the last six weeks. The data for the model is
updated daily, of course, so that’s something to look at. But the data schema in the
feature store hasn’t changed in several months.

Gabi needs to continue troubleshooting but takes time to compose a quick message
to the finance and payments teams that asked for help with this issue. Gabi confirms
what is known so far: the recommendations system is running and producing results,
and there are no recent changes to be found, but the quality of the results has not
been verified. Gabi reminds them to inform their department heads if they have not
already, which seems wise given the amount of money the company appears to be
losing.

No obvious software, modeling, or data updates correlate with the outage, so Gabi
decides that it’s time to dig into the recommendations model itself. Gabi sends a
quick message to Imani, who built the model, asking for help. As Gabi is explaining
to Imani what they know so far (fewer products purchased, fewer recommendations
purchased per checkout, no system changes to speak of), the note from customer
support comes to mind. Customers complaining about “weird” recommendations, if
the timeline matches up, certainly seems relevant.

Customer support staff confirm that they started getting the first sporadic complaints
just over three weeks ago but that they have been intensifying and became especially
pointed in the last week. Imani thinks this may be worth investigating and asks
Gabi to grab enough data to trend some basic metrics on the recommendations
system: number of recommendations per browse page, average hourly delta between
expected “value” of all recommendations (probability that a customer will purchase
a recommended product times the purchase price), and the observed value (total
value of recommended products ultimately purchased). Imani grabs a copy of recent
customer queries and product results in order to use them as a repeatable test of
the recommendation system. The recommendation system uses the query that a
user made, the page that they are on, and their purchase history (if we know it) to
make recommendations, so this is the information that Imani will need to query the
recommendation model directly.
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7 IP addresses are probably personal information or PII in many jurisdictions, so caution must be exercised.
This is not always widely understood by systems engineers or operators, especially those who work in
countries with looser legal governance frameworks. Additionally, search queries that can be correlated to the
same user demonstrably reveal private information by means of the combination of the queries. Famously, see
Wikipedia’s “AOL search log release” page for context.

Without more information, we have to worry that by doing this,
Imani may have violated the privacy of YarnIt’s customers. Search
queries may contain protected information like user IP addresses,
and any collection of search queries contains the additional prob‐
lem that when correlated with each other for a given user, they
reveal even more private information.7 Imani definitely should
have consulted with privacy and data protection professionals at
YarnIt, or better yet, not even had direct, unmonitored access to the
queries to make this kind of a mistake.

Imani extracts out about 100,000 queries and page views and sets up a test environ‐
ment where they can be played against the recommendation model. After a test run
through the system, Imani has recommendations for all of the results and has stored
a copy of the whole run so that it can be compared to future runs if they need to
modify or fix the model itself.

Gabi comes back and reports something interesting. Just over three weeks ago, the
number of recommendations per page dropped slowly. For one week, the difference
between expected value and observed value of each recommendation declined only
a bit. By two weeks ago, the recommendation count plateaued at just under 50%
lower than it has been. But then the value of the recommendations began to drop
significantly compared to the expected value. That decline continued through last
week. Two weeks ago, the observed value of the recommendations hit a low value
of 40% of their expected value. Even more strangely, though, the gap between the
expected value and observed value of the recommendations started narrowing a week
ago, but at the same time the number of recommendations shown began falling again,
so that now we seem to be showing very few recommendations at all, but those that
we do show seem to be relatively accurately valued. Something is definitely wrong,
and it is starting to look like it’s the model, but no clear diagnosis is flowing from this
set of facts. Figure 11-1 shows a graphical representation of this set of changes over
time.

Story Time | 267

https://oreil.ly/U2bCP


Figure 11-1. The number of expected and shown recommendations as well as their
average expected value as they change over the period of the incident

Imani continues to build the QA environment to test hypotheses. On a hunch, Gabi
and Imani grab another 100,000 queries and page views from a month ago (before
there was any evidence of a problem) as well as a snapshot of a model from every
week in the last six weeks. Since the model retrains daily, even though the configura‐
tion of the model is exactly the same day after day, each day the model has learned
from the things the users did the preceding day. Imani plans to run the old and new
queries against each of the models and see what can be learned.

Gabi pushes for a quick test first: today’s queries versus a month-old model. Here’s the
thinking: if that works, there’s a quick mitigation (restore the old model to serving)
while troubleshooting continues. Gabi is focused on solving the lost revenue problem
as quickly as possible. Imani runs the tests, and the results are not that promising and
difficult to evaluate. The old model makes different recommendations than the new
model and does seem to make slightly more of them. But the old model still makes
many fewer recommendations against today’s queries than it did against the queries a
month ago.

Without something quite a bit more concrete, Gabi isn’t comfortable that changing
the model to an older one will help. It might even do more damage to our revenue
than the current model. Gabi decides to leave the recommendation system in its
current state. It’s time to send another note to the folks in finance and payments
about the current status of the troubleshooting. The payments and finance contacts
both report that their bosses want a lot more information about what’s going on.
Gabi’s colleague Yao, who has been shadowing the investigation and is familiar with
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the recommendations system, is drafted to handle communications. Yao promptly
sets up a shared document with the state as it is known so far and links to specific
dashboards and reports for more information. Yao also sends out a broad notice to
senior folks in the company, notifying them of the outage and the current status of
the investigation.

Imani and Gabi finish running the full sweep of old and new queries against older
and newer models. The results are different for each pair, but nothing broadly
systematic stands out that might explain the differences, and the general metrics
match the weird pattern described previously. Imani decides to forget the model for
a second and focus instead on the queries and page views themselves. Imani wants to
figure out how they have changed in the last month, thinking maybe the problem is
with the model’s ability to handle a shift in user behavior rather than something being
wrong with the model itself.

Imani spot-checks the queries, but there are 100,000 of them in each of two batches,
and whatever might be substantially different about them is not exactly obvious.
Gabi, meanwhile, produces two reports. The first looks exclusively at the search
queries that customers used to get to the product pages they ended up on. Gabi toke‐
nizes the search queries and just counts the appearances of each word. While that’s
running, Gabi takes the product pages the customers ended up on and assigns each to
a large category (yarn, pattern, needles, accessories, gear), and then to subcategories
within those, according to the product ontology (built by another team). Gabi lines
up the two pairs of reports and looks for the biggest differences between the user
behavior four weeks ago and today.

The results are shockingly obvious: compared to four weeks ago, users have increas‐
ingly been looking for very different products. In particular, they are now looking
for lightweight yarns, patterns for vests and smaller items, and smaller-gauge needles.
Imani and Gabi stare at the results, and the problem suddenly seems so obvious.
What happened four weeks ago? It got very hot in the northern hemisphere, where
the majority of YarnIt’s customers are based. The heat came earlier than usual and
significantly decreased the interest most customers had in knitting with chunky,
warm wool.

Imani points out, however, that that doesn’t explain the decrease in recommenda‐
tions, only the change in what the recommendations should be. This still leaves the
question of why aren’t we just recommending good hemp and silk yarn instead of
wool? Gabi walks through a few queries to the recommendation engine by hand,
using a command-line tool built for troubleshooting like this, and notices something.
The recommendation engine test instance is set to log many more details than the
production instance. One of the things it’s logging at a pretty high rate is that many
candidate recommendations are disqualified from being shown to users because
they’re out of stock.
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Yao gets an update from Imani and Gabi, updates some of the shared doc, and
publishes some information to the increasingly large group of people waiting to find
out how the company is going to fix this problem. Someone from the retail team sees
the note about many recommendations being out of stock and mentions to Yao that
YarnIt did lose several important suppliers recently. One of the biggest, KnitPicking,
is a popular supplier of fashionable yarns, many of which happen to be lightweight.
In fact, KnitPicking was one of the largest suppliers of those weights of yarn at those
price points. Yao gets more details on the timing of the supply problems, adds it to
the doc, and reports back to Gabi.

This is an interesting state for the incident to be in. We have a likely
root cause but no obvious way to mitigate it or resolve it.

Imani and Gabi have a solid hypothesis on the weird recommendations. The recom‐
mendations system is configured with a minimum threshold of expected value for
each recommendation it shows so that it won’t show terrible recommendations when
it doesn’t have any good ones. But it takes a while for a recommendation’s expected
value to adjust, especially when it hasn’t been shown often recently. Imani concludes
that the system quickly learned that few people wanted heavyweight wool yarns. But
once those were understood to be poor recommendations, it took a while for the
system to cycle through many other products until it finally concluded that we really
don’t have very much stock in the products that our customers currently want to buy.

Gabi, Imani, and Yao schedule a meeting with the heads of retail and finance to
discuss what they have learned and ask for guidance on how to proceed. Oddly,
the current state seems to be that the recommendations system is now moderately
good for current circumstances. It recommends few products for most customers
on most page views since we don’t have much of what most of our customers want
right now. The loss of revenue was as much due to supply problems as it ever was
due to the recommendations system. Presented with the facts as they are known, the
head of retail asks the team to verify its findings to be certain but agrees that fixing
the supply problem is the highest priority. The finance lead nods and goes off to
sharply reduce projections for how much money we will make this quarter. There is
no obvious change to the recommendations model that can improve the situation,
given our supply shortfalls and the way that the weather has impacted our customers’
preferences.
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At this point, the outage is probably over, since we’ve decided not
to change the system or model.

The team gathers the next day to review what happened and what they can learn from
it. Here are some of the proposed follow-up actions:

• Monitor and graph the number of recommendations per page view, revenue per•
recommendation, and percentage gap between expected value of all recommen‐
dations per hour and the actual sales value.

• Monitor and alert on high rates of candidate product recommendations unavail‐•
able (for whatever reason: out of stock, legal restrictions, etc.). We can also con‐
sider monitoring stock levels directly if we can find a high-signal way to do so,
although ideally this would be the responsibility of a supply-chain or inventory
management team. We should be careful here not to be overbroad in our moni‐
toring of other teams’ work to avoid burdening our future selves with excessive
alerting. We should think about monitoring user query behavior, in aggregate,
directly as well so that we might be able to detect significant shifts in query topics
and distribution. This kind of monitoring is generally good for graphing but not
for alerting—it’s just too hard to get right. Finally, we can work more closely
with the customer support team to get them tools to investigate user reports like
these. If the support team had a query replicator/analyzer/logger, it may have
been able to generate a considerably more detailed report than “customers say
they get weird recommendations.” This kind of “empower another team to be
more effective” effort often pays off much more than pure automation.

• Review ways to get the model to adjust more quickly. Taking so many days to•
converge on the right recommendation behavior isn’t reasonable. The overall
stability of the model has been perceived to be of value, but in this case it ended
up showing bad recommendations to users for many days and making it harder
for the production team to troubleshoot problems with it. Imani wants to find a
way to improve the responsiveness to new situations without making the model
overly unstable.

• We should treat this as an opportunity to think about what the model should•
do when it doesn’t have any good recommendations. This is fundamentally a
product and business problem rather than an ML engineering problem: we need
to figure out the behavior we want the model to exhibit and the kinds of recom‐
mendations we think we should surface to users under these circumstances. At a
high level, we would like to keep making money at a reasonable rate with good
margins, even when we do not have the products that our customers want the
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most. Figuring out whether there’s a way to identify a product recommendation
strategy to do that is a hard problem.

• Finally, it’s clear that some exogenous data to the ML system should be always•
available to make troubleshooting situations like these easier. In particular, the
production engineers should have revenue results in aggregate and broken down
by product category in the product catalog, by geography, and by the original
source of the user viewing the product (search result or recommendation or
home page).

Many of these follow-ups are quite ambitious and unlikely to be completed in any
reasonable amount of time. Some of them, though, can be done fairly quickly and
should make our system more resilient to problems like this in the future. As always,
figuring out the right balance and understanding the trade-offs in implementing
those is precisely the art of good follow-up, though we should favor the ones that
make problems faster to troubleshoot.

Stages of ML incident response for story 3
Although this incident had a somewhat different trajectory from that of the previous
two stories, we can see many of the same themes appear. Rather than repeat them,
let’s try to focus on any additional lessons we can learn from this outage:

Pre-incident
No obvious significant failure in the architecture or implementation of our
system led to this outage, which is interesting. We definitely could have
made choices that would have made the outage progress differently, and more
smoothly for our users, but in the end we cannot recommend products we don’t
have, and sales were going to go down. There may be a model that could produce
better recommendations under these circumstances (rapid change in demand
combined with an inventory problem), but that falls more under the heading of
continuous model improvement rather than incident avoidance.

Trigger
The weather changed, and we lost a supplier. This is a tough combination of
events to directly detect, but we can certainly try with some of the monitoring
efforts that were picked.

Outage begins
In some ways, there is no outage. That is what is most interesting about this inci‐
dent. An outage can be understood to be a failing of the system such that it yields
an incorrect result. It’s appropriate to describe the “weird recommendations”
period as an outage, but one with only minimal costs since the main impact was
probably to annoy our users a bit. But the loss in revenue wasn’t caused by the
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recommendations model nor was it preventable by it. Likewise, the outage won’t
end until the weather changes or we source a new supply of lightweight yarns.

Detection
The earliest sign of the outage was the customer complaints about weird recom‐
mendations. That’s the kind of noisy signal that probably cannot be relied on, but
as noted, we can get the support team better tools so that it can report problems
in more detail. Other, less obvious, signals may have had a higher accuracy that
we could use for detection, but even figuring them out is a data science problem.

Troubleshooting
The process of investigating this outage includes some of the hallmarks of many
ML-centric outage investigations: detailed probing at a particular model (or set of
models or modeling infrastructure) coupled with broad investigation of changes
in the world around us. The investigation might have proceeded more quickly
if Sam had followed up on the detailed timeline of revenue from the finance
team. With the breakdown of revenue changes by product, category, or partner,
we should have been able to see a sharp shift in consumer behavior combined
with a sharp rise and then drop in sales from KnitPicking (as our stock in its
products ran low). It is sometimes difficult to remember that clarity about an
outage might come from looking more broadly at the whole situation rather than
more carefully at a single part of it.

Mitigation/resolution
Some outages have no obvious mitigation. This is tremendously disappointing,
but occasionally there’s no quick way to restore the system to whatever properties
it previously had. Moreover, the only way to actually resolve the core outage,
and get our revenue back on track, is to change what our users want or to
fix the products that we have available to sell. One thing the team didn’t think
about, probably in part because it was focused on troubleshooting the model
and resolving the ML portion of the outage, was that there may have been other,
non-ML ways of mitigating the outage: what if our system showed out-of-stock
recommendations and invited customers to be notified when we had those (or
similar) products available? In that case, we might have avoided some of the lost
revenue by shifting it forward in time and also reduced the weird recommenda‐
tions served to customers. Sometimes mitigations can be found outside of our
system.

Follow-up
In many cases, follow-up from an ML-centric incident evolves into a phase that
doesn’t resemble “fix the problem” so much as “improve the performance on
the model.” Post-incident follow-up often devolves into longer-term projects,
even for non-ML-related systems and outages. But the boundary between a “fix”
and “ongoing model improvement” is particularly fuzzy for ML systems. One
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recommendation: first define your model improvement process clearly. Track
efforts that are underway and define the metrics you plan to use to guide model
quality improvement. Once an incident occurs, take input from the incident to
add, update, or reprioritize existing model improvement work. For more on this,
see Chapter 5.

These three stories, however different in detail, demonstrate common patterns for
ML incidents in their detection, troubleshooting, mitigation, resolution, and ulti‐
mately post-incident follow-up actions. Keeping these in mind, it is useful to take a
broader view of what is happening to make these incidents somewhat different from
other outages in distributed computing systems.

ML Incident Management Principles
While each of these stories is specific, many of their lessons remain useful across
various events. In this section, we will back away from the immediacy of the stories
and distill what they, and the rest of our experience with ML systems outages, can
teach us in the long term. We also offer a specific list of recommendations for you to
follow to get ready for and respond to incidents.

Guiding Principles
Three overarching themes that appear across ML incidents are so common that we
list them here as guiding principles:

Public
ML outages are often detected first by end users, or at least at the very end of the
pipeline, all the way out in serving or integrated into an application. This is partly
true because ML model performance (quality) monitoring is difficult. Some
kinds of quality outages are obvious to end users but not obvious to developers,
decision makers, or SREs. Typical examples include anything that affects a small
sample of users 100% of the time. Those users get terrible performance from our
systems all the time, but unless we happen to look at a slice of just those users,
aggregate metrics probably won’t show anything wrong.

Fuzzy
ML outages are less sharply defined in two dimensions: in impact and in time.
With respect to time, determining the precise start and end of an ML incident
is often difficult. Although there may well be a traceable originating event, estab‐
lishing a definitive causal chain can be impractical. ML outages are also unclear
in impact: it can be hard to see whether a particular condition of an ML system
is a significant outage or just a model that is not yet as sophisticated or effective
as we would like it to be. One way to think about this is that every model starts
out very basic, doing only some portion of what we hope it can do one day. If our
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work is effective, the model gets better over time as we refine our understanding
of how to model the world and improve the data the model uses to do so. But
there may be no sharp transition between “bad” and “good” for models. There is
often only “better” and “not quite as good.” The line between “broken” and “could
be better” is not always easy to see.

Unbounded
ML outage troubleshooting and resolution involve a broad range of systems and
portions of the organization. This is a consequence of the way that ML systems
span more technical, product, and business arms within organizations than non-
ML systems. This isn’t to say that ML outages are necessarily more costly or more
important than other outages—only that understanding and fixing them usually
involves broader organizational scope.

With the three big principles in mind, the rest of this section is organized by role.
As we have stated, many people working on ML systems play multiple roles. It is
worth reading the principles for each role, whether you expect to do that work or not.
By structuring the lessons by role, we can bring out the particular perspective and
organizational placement particular to that role.

Model Developer or Data Scientist
People working at the beginning of the ML system pipeline sometimes don’t like to
think about incidents. To some, that seems like the difficult “operations” work that
they would rather avoid. If ML ends up mattering in an application or organization,
however, the data and modeling staff will absolutely be involved in incident manage‐
ment in the end. They can do certain things to get ready for that.

Preparation
A few concrete steps, taken in advance, can significantly improve the ability of an
organization to respond to an incident. Among these are the following:

Organize and version all models and data
This is the most important step that data and modeling staff can take to get
ready for forthcoming incidents. If you can, put all training data in a versioned
feature store, with clear metadata spelling out where all the data came from
and which code or teams are responsible for its creation and curation. That last
part is often skipped: we will end up performing transformations on the data
we put into the feature store, and it is critical that we track and version the
code that performs those transformations. Additionally, if we can, we should
store intermediate artifacts from all training runs in the metadata system as well.
Finally, it is useful to store historical versions of the models in ready-to-serve
format. As you saw, these can be terribly useful for quick mitigation in the case of
a rapid and unexplained decline in model quality.
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8 Of course, these different recommendations might mean the model is picking up on proxies for unfair bias,
and model designers and operators should use fairness evaluation tools to regularly look for this bias.

Specify an acceptable fallback
When we first start, the acceptable fallback might be “whatever we’re doing now”
if we already have a heuristic that works well enough. In a recommendations
case, this might be “just recommend the most popular products” with little or no
personalization. The challenge is that as our model gets better, the gap between
that and what we used to do may get so large that the old heuristic no longer
counts as a fallback. For example, if our personalized recommendations are good
enough, we may start attracting multiple (potentially very different) groups of
users to our applications and sites.8 If our fallback recommendation is “whatever
is popular,” that might produce truly awful recommendations for every different
subgroup using the site. If we become dependent on our modeling system, the
next step is to save multiple copies of our model and periodically test falling
back to them. This can be integrated into our experimentation process by having
several versions of the model in use at any one time, with (for example) a
primary, a new, and an old model.

Decide on useful metrics
The final bit of preparation that is most useful is to think carefully about model
quality and performance metrics. We need to know whether the model is work‐
ing, and model developers will have a set of objective functions that they use
to determine this. Ultimately, we want a set of metrics that detect when the
model stops working well that are independent of how it is implemented. This
turns out to be a more challenging task than it might seem, but the closer we
can approximate this, the better. Chapter 9 addresses the topic of selecting these
metrics in a little more detail.

Incident handling
Model developers and data scientists play an important role during incidents: they
explain the models as they currently are built. They also generate and validate
hypotheses about what might be causing the problems we are seeing.

To play that role, model and data folks need to be reachable; they should be available
off-hours on an organized schedule such as an on-call rotation or equivalent. They
should not expect to be woken up frequently, but they might well be indispensable if
they are.

Finally, during incident handling and triage, model and data staff may be called upon
to do custom data analysis and even to generate variants of the current model to test
hypotheses. They should be ready to do so, but also prepared to push back on any
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requests that require violating user privacy or other ethics principles. See “The Ethical
On-Call Engineer Manifesto” on page 284 for more detail on this idea.

Continuous improvement
Model and data staff should work to shorten the model quality evaluation loop as
a valuable but not dominant priority. Chapter 5 provides more details, but the idea
here is similar to any troubleshooting: the shorter the delay between a change and
an evaluation of that change, the faster we can resolve a problem. This approach will
also pay notable benefits to the ongoing development of models, even when we’re not
having an outage. To do this, we’ll have to justify the staffing and machine resources
to get the training iterations, tools, and metrics required. It won’t be cheap, but if
we’re investing in ML to create value, this is one of the best ways for this part of our
team to deliver that value, with the least risk of multiday outages.

Software Engineer
Some, but not all, organizations have software engineers who implement the systems
software to make ML work, glue the parts together, and move the data around.
Whoever is playing this role can significantly improve the odds that incidents go
better.

Preparation
Data handling should be clean, with clear provenance and as few versions of the
same data as possible. In particular, when there are multiple “current” copies of the
same data, this can result in subtle errors detected only in drops in model quality or
unexpected errors. Data versioning should be explicit, and data provenance should be
clearly labeled and discoverable.

It is helpful if model and binary rollouts are separate and separable. The binaries that
do the inference in serving, for example, and the model that they are reading from,
should be pushed to production independently, with quality evaluations conducted
each time. This is because binaries can affect quality subtly, as can models. If the
rollouts are coupled, troubleshooting can be much more difficult.

Feature handling and use in serving and training should be as consistent as possible.
Some of the most common and most basic errors are differences in feature use
between training and serving (called training-serving skew). These include simple
differences in quantization of a feature, or even a change in certain features’ contents
altogether (a feature that used to be income becomes zip code, and chaos ensues
immediately, for example).

Implement or develop tooling as much as possible (sometimes test development is
done by specialist test engineers, but this is organizationally specific). We will want
tooling for model rollout and model rollback and for binary rollout and rollback.
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We should have tools to show the versions of the data (reading from the metadata)
in every environment, and tools for customer support staff or production engineers
(SREs) to read data directly for troubleshooting purposes (with appropriate logging
and audit trails to respect privacy and data integrity guarantees). Where possible,
find tooling that exists for your framework and environment already, but plan to
implement at least some. The more tooling that exists that works, the lower the
burden on software engineers during incidents.

Incident handling
Software engineers should be a point of escalation during incidents, but if they have
done their jobs well, they should be alerted only rarely. Software failures will occur in
the model servers, data synchronizers, data versioners, model learners, model train‐
ing orchestration software, and feature store. But as our system gets more mature,
we will be able to treat this as a few large systems that can be well managed: a data
system (feature store), a data pipeline (training), an analytics system (model quality),
and a serving system (serving). Each of these is only slightly harder for ML than for
non-ML problems, and so software engineers who do this well may have very low
production responsibilities.

Continuous improvement
Software engineers should work regularly with model developers, with SREs/produc‐
tion engineers, and with customer support in order to understand what is missing
and how the software should be improved. Most common improvements will involve
resilience to big shifts in data and thoughtful exporting of software state for more
effective monitoring.

ML SRE or Production Engineer
ML systems are run by someone. Larger organizations may have dedicated teams of
production engineers or SREs who take responsibility for managing these systems in
production.

Preparation
Production teams should be staffed with sufficient spare time to handle incidents
when they come up. Many production teams fill their plate with projects, ranging
from automation to instrumentation. Project work like this is enjoyable and often
results in lasting improvements in the system, but if it is high priority and deadline
driven, it will always suffer during and after an incident. If we want to execute project
work effectively, we need to have spare capacity.

We will also need training and practice. Once the system is mature, large incidents
may happen infrequently. The only way that our on-call staff will gain fluency with
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9 For much more on this topic, see Chaos Engineering by Casey Rosenthal and Nora Jones (O’Reilly, 2020).
10 The statistics covering this and techniques for setting thresholds are covered well in Mike Julian’s Practical

Monitoring (O’Reilly, 2017), especially Chapter 4.

the incident management process itself, but also with our troubleshooting tools and
techniques, is to practice. Good documentation and tooling helps, but not if on-call
staff can’t understand the docs or find the dashboards. Some systems are sufficiently
dynamic as to provide their own, regular, opportunities for this practice (this is a
polite way of noting that some of our systems are broken fairly often). In this case,
teams should be sure to regularly share the incident management lead role when
the opportunity arises. For systems where this is not the case, scheduling regular,
intentional, small breakages during business hours is one good approach.9

Production teams should conduct regular architectural reviews of the system to think
through the biggest likely weak spots and address them. These might be unnecessary
data copies, manual procedures, single points of failure, or stateful systems that
cannot easily be rolled back.

Setting up monitoring and dashboards is a topic unto itself and is covered more
extensively in Chapter 9. For now, we should note that monitoring distributed
throughput pipelines is extremely difficult. Since progress is not reducible to a single
value (the oldest data we’re still reading, newest data we have read, how fast we’re
training, how much data is left to read), we need to make decisions based on changes
in data distribution in the pipeline.

We will need to set up SLOs and defend them. As noted, our systems will be behaving
in complex ways with multiple dimensions of variable performance along the “some‐
what better” and “somewhat worse” axis. To pick thresholds, the first thing we’ll need
to do is define SLIs that we want to track. In ML, these are generally slices (subsets)
of the data or model. Then we’ll pick a metric for how those are performing. Since
these metrics will change over time, if our data is normally distributed, we can pick
thresholds by their distance from the median.10 If we update that periodically but not
too often, we will continue to be sensitive to large shifts while ignoring longer-term
trends. This may miss outages that happen slowly over weeks or months, but it will
not be overly sensitive.

Production engineering teams should educate themselves about the business that
they are in. This seems ancillary but isn’t. ML systems that work make a difference
for the organizations that deploy them. To successfully navigate incidents, SREs or
production engineers should understand what matters to the business and how ML
interacts with that. Does the ML system make predictions, avoid fraud, connect
clients, recommend books, or reduce costs? How and why does it do that, and
why does that matter to our organization? What are the specific objectives that our
organization is trying to accomplish, and how are they measured? Or even more
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basically, how is our organization put together? Where is an organizational chart (for
a sufficiently large organization)? Answering those questions ahead of time prepares
a production engineer for the necessary work of prioritizing, troubleshooting, and
mitigating ML outages.

Finally, we need as many objective criteria to trigger an incident as possible. The
hardest stage of an incident is before it is declared. Often many people are concerned.
There is pervasive and disconnected evidence that things are not going well. But
until someone declares an incident and engages the formal machinery of incident
management, we cannot manage the incident directly. The clearer the guidelines we
determine in advance, the shorter that period of confusion.

Incident handling
Step back and look at the whole system. ML outages are seldom caused by the system
or metric where they manifest. Poor revenue can be caused by missing data (on
the other side of the whole system!). Crashes in serving can be caused by changes
in model configuration in training or errors in the synchronization system connect‐
ing training to serving. And, as we’ve seen, changes in the world around us can
themselves be a source of impact. This is a fairly different practice than production
engineers normally employ, but it is required for ML systems outages.

Be prepared to deal with product leaders and business decision makers. ML outages
rarely stop at the technical team’s edge. If things are going wrong, they usually impact
sales or customer satisfaction—the business. Extensive experience interacting with
customers or business leaders is not a typical requirement for production engineers.
ML production engineers tend to get over that preference quickly.

The rest of incident handling is normal SRE/production incident handling, and most
production engineers are good at it.

Continuous improvement
ML production engineers will collect many ideas about how the incident could have
gone better. These ideas range from monitoring to rapidly detect the problem that
we’re not yet doing to system rearchitectures that would avoid the whole outage in
the first place. The role of the production engineer is to prioritize these ideas.

Post-incident follow-up items have two dimensions of prioritization: value and cost/
feasibility of implementation. We should prioritize work on items that are both
valuable and easy to implement. Many follow-up items will fall into the category of
“likely valuable but extremely difficult to implement.” These are a separate category
that should be reviewed regularly with senior leads but not prioritized alongside
other tactical work, since working on them in that setting will never make sense.
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Product Manager or Business Leader
Business and product leaders often think that following and tracking incidents is not
their problem, but rather one for the technical teams. Once you add ML to your
environment in all but the most narrow ways, your awareness of it likely becomes
critical. Business and product leaders can report on the real-world impact of ML
problems, and can also suggest which causes are most likely and which mitigations
are least costly. If ML systems matter, business and product leaders should and will
care about them.

Preparation
To the extent possible, business and product leaders should educate themselves about
the ML technologies that are being deployed in their organization and products,
including, and especially, the need to responsibly use these technologies. Just as
production engineers should educate themselves about the business, business leaders
should educate themselves about the technology.

We should know two critical things: first, how does our system work (what data
does it use to make what predictions or classifications), and second, what are its
limitations? There are many things that ML systems can do but also many they
cannot (yet, perhaps). Knowing what we cannot do is as critical as knowing what
we’re trying to do.

Business and product leaders who take a basic interest in the way ML works will
be astoundingly more useful during a serious incident than those who do not. They
will also be able to directly participate in the process of picking ML projects worth
investing in.

Finally, business leaders should ensure that their organization has the capacity to
handle incidents. This largely means that the organization is staffed to a level capable
of managing these incidents, trained in incident management, and invested in the
kind of spare time necessary to make space for incidents. If it has not, it is the job of
the business leader to make space for these investments. Anything else creates longer,
larger outages.

Incident handling
Business leaders rarely have an on-call rotation or other systematized way of reaching
them urgently, but the alternative is “everyone is mostly on call most of the time.”
Culturally, business leaders should consider formalizing these on-call rotations, if
only to enable themselves to take a vacation with freedom. The alternative is to
empower another rotation of on-call staff to make independent decisions that can
have significant revenue consequences.
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During the actual incident, the most common problem that business leaders will
face is the desire to lead. For once, they are not the most valuable or knowledgeable
person. They have the right to two things: first, to be informed, and second, to
offer context of the incident’s impact on the business. They do not generally usefully
participate directly in the handling of the incident; they’re simply too far removed
from the technical systems to do so. Many business leaders should consider proxying
their questions through someone else and stay off direct incident communications
(chat, phone, Slack) as a way of avoiding their natural desire to take over.

Continuous improvement
Business leaders should determine the prioritization of work after outages and should
set standards for what completion of those items means. They can do that without
having particular opinions about how, exactly, we improve. But, rather, they can
advocate for general standards and approaches. For example, if we rank follow-up
work items in priority order (Highest Priority through Nice to Have), we can priori‐
tize work on the Highest Priority bugs ahead of the High Priority ones, and so on.
And we can set guidelines that if all of the Highest Priority items are not done after a
particular period of time, we have a review to figure out whether anything is blocking
them and what we can do, if anything, to speed up implementation.

Similarly, product teams have a huge role in specifying, maintaining, and developing
SLOs. SLOs should represent the conditions that will meet a customer’s needs and
make them happy. If they do not, we should change them until they do. The people
to own the definition and evolution of those values are principally the product
management team.

Special Topics
We haven’t yet addressed two important topics that show up during the handling of
ML incidents. This section delves into those subjects.

Production Engineers and ML Engineering Versus Modeling
Given that many ML systems problems present as model quality problems, a mini‐
mum level of ML modeling skill and experience seems required by ML production
engineers. Without knowing something about the structure and functioning of
the model, it may be difficult for those engineers to effectively and independently
troubleshoot problems and evaluate potential solutions. The converse problem also
appears: if there is no robust production engineering group, we might well end up
with modelers responsible for the production serving system indefinitely. While both
of these outcomes may be unavoidable, they are not ideal.
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This is not completely wrong, but it’s also entirely situationally dependent. Specifi‐
cally, in smaller organizations, it will be common to have the model developer, system
developer, and production engineer be a single person or the same small team. This
is somewhat analogous to the model in which the developer of a service is also
responsible for the production deployment, reliability, and incident response for that
service. In these cases, obviously expertise with the model is a required part of the
job.

As the organization and services get larger, though, the requirement that production
engineers be model developers vanishes entirely. In fact, most SREs doing production
engineering on ML systems at large employers never or rarely train models on their
own. That is simply not their expertise and is not a required, or even useful, expertise
to do their jobs well.

ML SREs or ML production engineers do need certain ML-related skills and knowl‐
edge to be effective. They need basic familiarity with what ML models are, how they
are constructed, and above all, the flavor and structure of the interconnected systems
that build them. The relationship of components and the flow of data through the
system is more important than the details of the learning algorithm.

Let’s say, for example, that we have a supervised learning system that uses TensorFlow
jobs scheduled at a particular time of day to read all the data from a particular
feature store or storage bucket and to produce a saved model. This is one completely
reasonable way to build an ML training system. In this case, the ML production
engineer needs to know something about what TensorFlow is and how it works,
how the data is updated in the feature store, how the model training processes are
scheduled, how they read the data, what a saved model file looks like, how big it is,
and how to validate it. That engineer does not need to know how many layers the
model has or how they are updated, although there’s nothing wrong with knowing
that. They do not need to know how the original labels were generated (unless we
plan to generate them again).

On the other side of the same coin, suppose we have settled on a delivery pipeline
in which an ML modeling engineer packages their model into a Docker container,
annotates a few configuration details in an appropriate config system, and submits
the model for deployment as a microservice running in Kubernetes. The ML model‐
ing engineer may need to understand the implications of how the Docker container
is built and how large the container is, how the configuration choices will affect the
container (particularly if there are config errors), and how to follow the container to
its deployment location and do some cursory log checking or system inspection to
verify basic health checks. The ML modeling engineer probably does not, however,
need to know about low-level Kubernetes choices like pod-disruption budget settings,
DNS resolution of the container’s pod, or the network connectivity details between
the Docker container registry and Kubernetes. While those details are important,
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especially in the case where infrastructure components are part of a failure, the ML
modeling engineer won’t be well suited to address them and may need to rely on
handing off those types of errors to an SRE specialist familiar with that part of the
infrastructure.

Detailed knowledge of model building can certainly be extremely helpful. But the
biggest reliability problem that most organizations run into is not a lack of knowledge
about ML. It is rather a lack of knowledge and experience building and productioniz‐
ing distributed systems. The ML knowledge is a nice addition rather than the most
important skill set.

The Ethical On-Call Engineer Manifesto
We’ve written a lot in this chapter about how performing incident response is differ‐
ent and more difficult when ML is involved. Another way in which ML incident
response is hard is how to handle customer data when you’re on call and actively
resolving a problem, a constraint we call privacy-preserving incident management.
This is a difficult change for some to make, since today (and decades previous), on-
call engineers are accustomed to having prompt and unmediated access to systems,
configuration, and data in order to resolve problems. Sadly, for most organizations
and in most circumstances, this access is absolutely required. We cannot easily
remove it and still allow for fixing problems promptly.

On-call engineers, in the course of their response, troubleshooting, mitigation, and
resolution of service outages, need to take extra care to ensure that their actions
are ethical. In particular, they must respect the privacy rights of users, watch for
and identify unfair systems, and prevent unethical uses of ML. This means carefully
considering the implications of their actions—not something easy to do during a
stressful shift—and consulting with a large and diverse group of skilled colleagues to
help make thoughtful decisions.

To help us understand why this should be the case, let’s consider the four incident
dimensions in which ethical considerations for ML can arise: the impact (severity and
type), the cause (or contributing factors), the troubleshooting process itself, and the
call to action.

Impact
Model incidents with effects on fairness can wreak truly massive and immediate harm
on our users, and of course reputational harm to our organization. It doesn’t matter
whether the effect is obvious to production dashboards tracking high-level KPIs or
not. Imagine a bank loan approval program that is accidentally biased. Although
the data supplied in applications might omit details on the applicants’ race, there
are many ways the model could learn race categories from the data that is supplied
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11 Models can learn race from geographic factors in areas that have segregated housing, from family or first
names in places where those are racially correlated, from educational history in places that have segregated
education, and even from job titles or job industry. In a racially biased society, many signals correlate with
race in a way that models can easily learn even without a race label in the model.

12 This topic is covered much more extensively in Chapter 6.
13 See, for example, “Famous Twitter Accounts Hacked: Insider Threat or Social Engineering Attack?” by Clare

O’Gara, though the incidents that make the papers are almost by definition a small subset of the ones that
actually happen.

and from other label data.11 If the model then systematically discriminates against
some races in approving loans, we might well issue just as many loans—and show
about the same revenue numbers on a high-level dashboard—but the result is deeply
unfair. Such a model in a user-facing production system could be bad for both our
customers and our organization.

In ideal circumstances, no organization would employ ML without undergoing at
least a cursory Responsible AI evaluation as part of the design of the system and the
model.12 This evaluation would provide clear guidelines for metrics and tools to be
used in identifying and mitigating bias that might appear in the model.

Cause
For any incident, the cause or contributing factors to the outage can have conse‐
quences for the ethically minded on-call engineer. What if the cause turns out to be
a deliberate design decision that is actually hard to reverse? Or the model was devel‐
oped without enough (or any) attention being paid to ethical and fairness concerns?
What if the system will continue to fail in this unfair way without expensive refactor‐
ing? Insider threat is real,13 don’t forget, but we don’t need to imagine that malice
aforethought took place for these kinds of things to happen: a homogeneous team,
strongly focused on shipping product to the exclusion of all else, can enable it purely
by accident. Of course, all of this is enhanced by the current lack of explainability of
most ML systems.

Troubleshooting
Ethics concerns (generally, privacy) often arise during the troubleshooting phase for
incidents. As you saw in story 3, it is tempting—maybe sometimes even required—to
look at raw user data while troubleshooting modeling problems. But doing so directly
exposes private customer data. Depending on the nature of the data, it might have
other ethical implications as well—consider, for example, a financial system that
includes customer investment decisions in the raw data. If a staff member has access
to that private information and uses it to direct their own personal investments, this
is obviously unethical and in multiple jurisdictions would be seriously illegal.
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Solutions and a call to action
The good news is that a lot of these problems have solutions, and getting started
can be reasonably cheap. On the one hand, we’ve already spoken about the generally
underweighted role that diverse teams can play in ensuring an organization against
bad outcomes. Fixing those generally involves fixing the process that produced them
rather than mitigating a specific one-time harm.

But a diversity of team members is not, by itself, a solution. Teams need to adopt the
use of Responsible AI practices during the model and system design phase in order to
create consistent monitoring of fairness metrics and to provide incident responders
a framework to evaluate against. For deliberate or inadvertent access to customer
data during incident management, restricting that access by default with justification,
logging, and multiple people in charge over the data (to act as ethical checks on
each other) is a reasonable balance of risk versus reward. Other mechanisms that are
useful to avoid the construction of flawed models are outlined in Chapter 6.

Finally, though it is not within our authority to declare it unilaterally—nor would we
wish to—we strongly believe there is an argument for formalizing such a manifesto,
and promoting it industry-wide. The time will come—if it is not already here—when
an on-call engineer will discover something vital and worthy of public disclosure, and
may be conflicted about what to do. Without a commonly understood definition of
what a whistleblower is in the ML world, society will suffer.

Conclusion
An ML model is an interface between the world as it is and as it changes on the one
hand, and a computer system on the other. The model is designed to represent the
state of the world to the computer system and, through its use, allow the computer
system to predict and ultimately modify the world. This is true in some sense of
all computer systems but is true at a semantically higher and broader sense for ML
systems.

Think of tasks such as prediction or classification, whereby an ML model attempts to
learn about a set of elements in the world in order to correctly predict or categorize
future instances of those elements. The purpose of the prediction or classification
always is, and has to be, changing the behavior of a computing system or an
organization in response to the prediction or classification. For example, if an ML
model determines that an attempted payment is fraud, based on characteristics of
the transaction and previous transactions that our model has learned from, this fact
is not merely silently noted in a ledger somewhere—instead, the model will usually
reject the transaction after such a categorization is made.

ML failures specifically occur when a mismatch arises among three elements: the
world itself and the salient facts about it, the ML system’s ability to represent the
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world, and the ability of the system as a whole to change the world appropriately.
Failures can occur at each of those elements or, most commonly, in combination or at
the intersections between them.

ML incidents are just like incidents for other distributed systems, except for all of
the ways that they are not. The stories here share several common themes that will
help ML production engineers prepare to identify, troubleshoot, mitigate, and resolve
issues in ML systems as they arise.

Of all of the observations about ML systems made in this chapter, the most significant
is that ML models, when they work, matter for the whole organization. Model and
data quality have to therefore be the mission of everyone in the organization. When
an ML model goes bad, fixing it will sometimes require the whole organization as
well. ML production engineers who hope to get their organizations ready to manage
these kinds of outages would do well to make sure that the engineers understand the
business, and the business and product leaders understand the technology.
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CHAPTER 12

How Product and ML Interact

As companies rush to use ML capabilities to meet customer needs, they are eager to
leverage cutting-edge research to tackle a wide variety of business applications. Many
of the product teams and business managers, still anchored in traditional software
product development methodologies, find themselves in a new and unfamiliar terri‐
tory: building ML products.

Building your first ML product can be overwhelming. It’s not just a question of
getting ML right, difficult enough in itself; rather, the integration of the ML into the
rest of the product (and the rest of the business) requires many things that need to
work together. Among these, data collection practices and governance, the quality of
data, definition of product behavior, UI/UX, and business goals all contribute to the
success of an ML-based product or feature.

Different Types of Products
One of the important and useful features of ML is that it can be applied to many types
of products. It can be used in analytics applications to derive insights about business
trends and metrics. It can be rolled into an appliance or device to be shipped to
consumers. Sophisticated ML systems are built into self-driving cars to detect other
objects and to make decisions about driving. The breadth of ML applications is huge
and growing. As a result of this huge diversity of use cases, organizations focused on
integrating ML into their existing or new products face an extremely steep learning
curve and numerous choices about their implementation.

We don’t cover most of these different kinds of ML in this chapter. Specifically, it is
not feasible for this chapter to seriously consider each of the many common types
of ML-product integrations that exist. Instead, we will focus on the use case we have
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been discussing throughout the book: yarnit.ai (our ecommerce web store) wanting
to integrate ML.

Considering this use case specifically has some nice aspects, and not just because it
extends an example that is touched on in every chapter of this book. The yarnit.ai
set of use cases includes some from the backend (e.g., consuming browsing and
purchase logs to predict interest in a product) and many frontend integrations as well
(e.g., looking up what products this customer might be interested in right now). It
has some complexity without being overwhelmingly difficult to understand for most
readers. Of course, it clearly can’t be an appropriate analogue for every other possible
system. Nonetheless, we hope there is something of use to you here.

Agile ML?
Outside certain well-defined environments, many contemporary software engineer‐
ing teams have moved to developing in iterative, focused, short loops called sprints
—as per the Agile Manifesto. However, applying Agile to ML systems is far from
straightforward. Agile, as a methodology, has several foundational characteristics:
short feedback loops, customer-oriented stories or story points, and estimation
geared toward a small team working on those story points.

Integration of ML into the product violates most of these assumptions. The feedback
loops are long (sometimes months or years) and come indirectly from the data
rather than directly from the customer. Small team execution is less useful because
the integration often involves people across the company (see Chapter 13 for more
perspective on this). Model development can have arbitrarily long delays while we
integrate the model into the product and wait for the results to show up in the
data. Additionally, we cannot build first and validate later since even the building
phase needs to be based on the data. There’s one final, and perhaps most important
point: ML models are neither perfectly reproducible nor stable over time. As has been
pointed out, we can train the same model multiple times with different results, or we
can leave the same model in place but have the world change sufficiently that our
value is no longer the same. ML models are never “done,” so ML product integration
has limited determinism.

Still, even though Agile approaches may not be super well suited for ML, adopting
a standard ML development lifecycle, as discussed in this chapter, can facilitate your
organization taking advantage of ML systems to power great customer experiences
and increase your revenues.

ML Product Development Phases
To manage uncertainty during the product development lifecycle, ML projects need
to be highly iterative from the beginning. The most important phases of an ML
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product development project are discovery and definition, business goal setting,
MVP construction and validation, model and product development, deployment, and
support and maintenance (Figure 12-1).

Figure 12-1. ML product development phases

Discovery and Definition
The development of an ML product should always start with discovery and defini‐
tion. Skipping this step is tempting, particularly if you come from a build-first,
validate-later background, but in an ML context, this step is critical and helps product
teams handle the uncertainty early. This begins by defining the problem space, and
understanding and framing the business problem and the desired outcome. It finishes
by mapping the problems to a solution space, which is not always an easy task.
Technical teams are looking for a quantitative baseline to measure feasibility. On the
other hand, business is struggling to achieve clarity and looking for clear cost-benefit
analysis at a time when the outcomes are unclear. Balancing stakeholder needs,
business-problem framing, defining goals and outcomes, and building relationships
with the business will be key.

Given that our product is designed to display results to humans in the end, there are
no shortcuts to good old-fashioned user research. Conduct thorough user research
to identify the pain points of the user and prioritize them according to their needs.
This helps build a user journey map, identifying critical workflows and potential
roadblocks. Further, the roadmap is useful for defining the processes that need to be
modified for the ML solution to work in the first place. You can do a market-sizing
exercise to estimate the business potential. Then the next question is, how do we
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know if ML can help address our user problems? Numerous ML applications exist
but, at its core, ML is best suited for making decisions or predictions. In general, our
style of human-facing ML system will have one or more of the following characteris‐
tics as deployed in production:

Complex logic that’s impractical to solve with human-defined rules
For example, search engines often have multiple phases of ranking that happen
in series, such as initial retrieval from the text index, primary ranking using text
similarity, contextual ranking, and personalized ranking.

Large-scale personalization
If the problem is expected to scale to thousands of users or more, it could be
a good use case for ML. In the yarnit.ai web store example, we expect to have
thousands of customers take advantage of a new offer/discount within three to
six months, which implies being able to support personalization across a large
user population.

Rules that change quickly over time
If the rules generally remain static year after year, a heuristic solution is prefer‐
red. However, if the business’s success depends on quick adaptation and rule
changes, ML is a good route. For example, if users of a web store are writing
product reviews constantly, the algorithm for recommending relevant products
needs to adapt in real time and is amenable to an ML solution.

A clear evaluation metric
For example, we want the model to provide recommendations that result in a
sale. In search, typing “kids hat” should return lists of patterns and yarn normally
associated with kids colors or knitting gauge needles that are associated with hats.

No requirement for 100% accuracy
If business success can be achieved with a high probability of accuracy rather
than with perfection, ML is a good option. For example, recommendation sys‐
tems will not be considered faulty if users don’t always want what is served. Users
can still have a great experience, and the ML model can learn from the lack of
sales to deliver improved recommendations in the future.

Business Goal Setting
The selection of ML requirements takes a careful combination of design and business
goals. Product managers (PMs) need to understand the end user and the long-term
business goals to drive value. For example, we want to create improvements to the
web store that encourage customers to find and buy more products they want, but
really we also want that to happen repeatedly, every time they return. Ultimately, we
do this by focusing on the end user and developing a deep understanding of a specific
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problem the product can solve. Otherwise, there will be a risk of developing an
extremely powerful system only to address a small (or possibly nonexistent) problem.

ML is rarely error free, and developing without guardrails can have serious conse‐
quences. We need to acknowledge that getting it wrong could carry huge costs and
that understanding the cost of getting it wrong is a significant part of building an
ML product. For example, say we are trying to predict and cancel orders on behalf
of customers when they reach out to the support team about order errors and/or
billing issues. The cost here is that errors in the model might wrongly interpret the
user’s intent as a cancellation, thereby having financial consequences for the user and
the company. On the other hand, in the case of a recommender system to suggest
similar products on the product details page, for a user with no purchase history, the
impact of bad recommendations might be just low conversion rates, and perhaps a
vague sense that our web store is not very trustworthy or useful. We must then think
about how to improve the model, but the consequences of getting it wrong are not
catastrophic in our use case (although they clearly are in many other ML products).

ML relies to a large extent on probabilities. Therefore, there will always be a chance
that the model gives the wrong output. PMs are responsible for anticipating and
recognizing the consequences of a wrong prediction. One great way to anticipate
consequences like the ones noted previously is to test, test, and test some more.
Understand what makes up the probabilities computed by the model. We need to use
the business purpose of ML in order to think about the desired precision (and recall)
of the model.

Once all of the consequences of getting a prediction wrong are identified, the PM
needs to make sure relevant safety nets are defined and built into the product to
mitigate the risks. Additionally, PMs may think of ways to change the underlying
product (change interaction flow, modify the input and output data paths, etc.) in
order to make incorrect predictions much less likely. As such, safety nets can be
intrinsic and extrinsic, and they are ingrained in all products. ML is not an exception.
As described in the following list, defining the safety nets and business performance
metrics that are relevant to the product we are building is a critical step before
introducing ML into the product:

Intrinsic safety nets
These recognize the impossibilities that are fundamental to the nature of the
product. For example, at our web store, a user cannot cancel an order if no order
has been made in the first place. Emails received from such users, with no order
numbers and with a subject of “canceling orders” can be ignored by the model
that is trying to learn the reasons for order cancellations. However, it’s a good
idea to have a customer support agent look into that case. A useful activity is to
map out the user journey for the product and identify the states that the user can
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go through. This helps weed out impossible predictions. Intrinsic safety nets are
invisible to the user.

Extrinsic safety nets
Extrinsic safety nets are visible to the user. They can take the form of confirming
user intent or double-checking the potential outcome. Some message systems
have a model that tries to detect the intent of a message and suggest replies to
its users. In most cases, however, these systems do not automatically assume
the reply is correct and send it without a human confirming the choice. More
commonly, these systems ask the user to pick from a list of potential replies.

Business performance goals
Along with the general ML model performance metrics that we’ve discussed
in Chapter 8, it is extremely important for PMs to clearly define the business
performance metrics to measure the success of the ML systems in production. To
evaluate business performance, it is necessary to start with a product or feature
goal. For example, increasing revenue could be a great business goal for our
yarnit.ai web store. Once this is defined, a product metric should be assigned to
evaluate success. The best metrics are specific and measurable. Specific metrics
reduce ambiguity and increase focus. Also, the easier it is to measure success, the
more certain we can be that we’re achieving the results we set out for in the first
place.

These metrics can vary from product to product. For example, the following are
a few important business metrics to track for ML-based recommendations on an
ecommerce store like yarnit.ai:

Click-through rate (CTR)
The number of product page views from a recommendations list divided by the
total number of products displayed on the recommendations list. For example,
on the shopping cart page, this metric would help determine the success of the
ML model powering the “Frequently bought together” list.

Conversion rate
The number of add-to-cart events from a recommendation list divided by the
total number of products displayed on the recommendations list. For instance,
on the product details page, this metric would help determine the success of the
ML model powering the “Compare with similar items” list.

Average order value (AOV)
The average value of orders from all purchase events. AOV is equal to the total
revenue divided by the number of orders.
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1 Learn more about the general ecommerce business metrics in “7 E-Commerce Metrics to Help You Measure
Business Success” by Anastasia Stefanuk.

Recommender-engaged AOV
The average value of orders that include at least one item selected from a rec‐
ommendations list. This is calculated from the recommender-engaged revenue
divided by the number of orders with at least one item that was selected from a
recommendations list.

Total revenue
The total revenue from all recorded purchase events. This value includes ship‐
ping and taxes.

Recommender-engaged revenue
The revenue for purchase events that include at least one catalog item selected
from a recommendations list. This value includes shipping and taxes and any
discount applied.

Also, ecommerce businesses usually track a lot more business metrics,1 including
customer acquisition cost (CAC), customer lifetime value (CLV), customer retention
rate (CRR), refund and return rates (RrR), and cart abandonment rate, as well as
vanity metrics such as social media engagement, website traffic, and page views.

MVP Construction and Validation
Investing in ML models in order to integrate with our product is likely to be expen‐
sive. To figure out whether the ML integration into our product will work, we need to
answer two questions: (1) can we make a model that works (or works well enough),
and (2) can we integrate that model into our product in a compelling and useful way?
Building a dataset with the right features and labels, training the model, and putting
it in production can range from a few weeks to a few months. We will want to get
a signal of usefulness early on to validate whether the model will work. This can be
accomplished through careful offline evaluation of the model we have built, analyzing
the responses to various common use cases we expect from the application.

To evaluate the utility in the user interaction, it is a good idea to fake that interaction
first, for a small set of users. Sometimes this is referred to as launching a minimal
viable product (MVP) with a fixed set of rules or heuristics (without real ML models
in place) to prove the point that the feature will really solve the customer needs.

For example, considering the use case of personalization, have a list of items ready
for a user to select based on what they have selected last. Simple rule-based engines
are often the first steps to evolution into a more complex ML model. Here are some
examples of rule-based recommenders:
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• If the user bought a knitting pattern, they probably need the yarn for that pattern•
as well as needles and other knitting-related supplies.

• If a user buys new yarn every fall as the weather gets colder, we should recom‐•
mend it to them every fall in their part of the world.

• If a user always pays by credit card, we surface that as the default payment option•
next time.

It will obviously be impossible to write rules to cover every case, and that is when ML
can be used best, but a few simple rule-based proxies go a long way toward validating
the outcome of the ML approach. The idea is to test whether users respond positively
to ML. While these techniques might not give the best results, they are important for
getting a signal. Getting a signal early on can save time and effort, and help correct
the vision and direction of the product. This is your best shot at guaranteeing returns
on the investment put into building an ML system.

Model and Product Development
With a clear set of goals and targets developed through previous stages, the next
step is to build the models and integrate them with customer-facing features. For
a general introduction to this, see Chapters 3 and 7. But in general, this is a collab‐
orative endeavor with design, engineering, ML researchers, business owners, and
PMs working together, and PMs can drive a lot of value by continuing deliberate
stakeholder management. The build will go from simple to complex—PMs should
prepare to drive the product through train, test, and validate cycles; manage standups
with scientists who may or may not be making progress; and navigate the iterative
dependence between design, science, and engineering teams. We discuss the roles and
responsibilities of various teams in Chapter 13.

Deployment
In the production deployment stage, the ML system is introduced to the infrastruc‐
ture, where it will serve the live customer traffic, and gather feedback data that is fed
into the ML training pipelines to improve the models. Feedback loops help measure
the impact of a model and can add to the general understanding of usability. In
the context of an ML system, feedback is also important for a model to learn and
become better. We discuss various model serving architectures and best practices in
Chapter 8.

Feedback loops are an important data collection mechanism, which yield labeled
datasets that can be directly plugged into the learning mechanism. In our yarnit.ai
web store example, the feedback loop could be quite simple—does the guest click on
the recommendations, and is this recommendation bought?
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2 This paragraph may be a slight overstatement for emphasis. While the work of a functional ML product
requires ongoing maintenance, and significantly more maintenance than a comparable non-ML project, it is
still true that most of the work occurs toward the first half of the project. As the model matures (and perhaps
as the behavior or situation it seeks to model also stabilizes), some organizations will reach a steady state, as
further investments in model improvements have a diminishing return.

Rolling out to production should be heavily tied to observing the business metrics
(discussed earlier in this chapter) in a controlled manner, to understand the impact
and to inform decisions about increasing the rollout or turning it off and investigat‐
ing unexpected results. In particular, one challenge is that the specific initiatives
or projects within a large company that ultimately contain the day-to-day work of
building an ML model may have many layers of separation from the higher-level
business goals. Personalization is a good example: at a high level, personalization
may be about increasing a metric like average revenue per user or increasing the
growth of new user acquisitions. But when a model is developed, it is likely to be
optimized around improving various low-level user experience metrics like scores of
engagement.

PMs have a crucial job to be a translator between these two domains and to con‐
stantly work to improve the methods of user observability that can help connect
improvements in the lower level with hypotheses around impact in the higher levels.
So it’s extremely important for product teams to have a plan for how an ML system
will be deployed incrementally. We discuss various methods of model evaluations in
Chapter 5.

Support and Maintenance
ML systems designed to integrate into products are not complete on their first ship‐
ping version. Arguably, they are never complete because they are attempting to model
the state of the world and deliver useful value about the state of the world in the
product. While developing and deploying ML systems can be relatively affordable,
maintaining them over time can be more difficult and expensive than commonly
assumed.2

Organizations that are serious about integrating ML into their products need to be
serious about continuing the maintenance of those ML models and the infrastructure
that produces them. This is at least part of why the Agile approach doesn’t fit ML
product integrations well: they never really ship, or rather they never finish. As our
product changes, as the needs of our customers change, as our understanding of the
business changes, and as the world changes, we will need to keep developing and
shipping models.
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3 One exception here is for transfer learning, whereby we get a general model (say, one that does image
recognition) from an external provider and then train it on our own data. But even then, the final model is
ours.

It is a feature of ML systems that it’s not usually clear when the work a team is doing
is “maintenance” or “development,” so conceptions of development work that rely on
a clean separation between them are tricky to apply.

Build Versus Buy
It is important in this section that we carefully scope the question of whether to build
or buy. Models are local to the organization that owns the data and the infrastructure.
In general, models must come from your learning on your own data.3 But the tools
and infrastructure we use to create our models are a different story. The world of ML
has no shortage of tools available, both open source and commercial. The decision of
build versus buy is usually a trade-off balancing cost, risk, customization, long-term
resource availability, intellectual property (IP), and vendor lock-in. However, in the
age of ML, we have more dimensions to this traditional question to consider, includ‐
ing make-or-buy models, data processing infrastructure/tools, and the end-to-end
platform that holds it all together. Here are some considerations to account for when
deciding what’s best for the business.

Models
As we’ve stated, models are generally local and not as easily acquired outside our
own organization. That said, many industry-specific ML models and applications
are available. Vendor-provided solutions may present a significant time- and effort-
saving potential, but the key aspects to assess build versus buy for models are dis‐
cussed next.

Generic use cases
Buying a prebuilt solution requires the data and process currently used in our
organization to be highly compatible with the expected input/output and behavior
of that solution. If a use case’s details, data, or processes are fairly specific to the
organization, the effort spent adjusting internal systems and processes to match the
vendor-provided solution’s specifications may wipe away the benefit from buying
something ready-made. If a packaged solution is truly generic, it can provide great
benefit. Simple reading of this paragraph might sound as though this would be a
comparatively rare happening: how likely is the existence of a generic model that does
what we need without any need of retraining or extension on our data?

As ML service providers multiply, the odds here are getting better all the time.
Consider some incredibly useful but really generic use cases:
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Object recognition in images
Tell me what is in a picture.

Text-to-speech and speech-to-text in multiple languages
Carry out spoken interaction with users.

Sentiment analysis
Tell me how positive or negative a set of text is about its subject.

In all of these examples, pretrained models can work well across a large number of
use cases, including ours at YarnIt. In these cases, we might be able to skip training a
model entirely.

Company’s data initiatives
The benefit of work done on deploying a specific ML use case goes way beyond that
use case itself. Often, first use cases are the start of a full data initiative. As a result,
ML models and/or application build-or-buy decisions should also take into account
the company’s data strategy: sometimes the acquisition of expertise and technology
are actual ends in and of themselves.

Data Processing Infrastructure
Data processing and infrastructure tools and technologies have evolved and are
still constantly evolving at a great pace. Traditional vendors, open source, and cloud-
based solutions compete with each other on every segment of the data infrastructure,
processing, and storage stack. Build or buy has taken a slightly different meaning and
is usually more centered around delegating responsibility as follows:

Support and/or maintenance
Typically full open source versus an independent third-party software vendor

Operations
Cloud versus on-premises

Accessibility
Packaged cloud tools versus native cloud tools

When it comes to infrastructure for data processing, the main decision drivers are no
longer about use cases but instead about internally available skills and vendor lock-in
risk factors. Commercial and open source platforms both have their pros and cons.

In the ML space, many commercial platforms are new, and are from new providers
and lack any long track record or history. As such, they may present significant
opportunities but also significant risks.

On the other hand, open source solutions, whether for ML or general-purpose
software, may be widely adopted, and in many cases have a longer track record than
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4 A bit of nuance exists here. It is true that algorithms change quickly (certainly yearly), as new approaches are
tried and found to be more successful at some types of problems, Some ML platforms, such as TensorFlow
and PyTorch most notably, are maintained over longer periods of time (those two since 2015 and 2016,
respectively). However, even in that time, both have changed significantly, and other ML platforms have
arisen that may be more effective ways to solve the same problems. So even the most stable ML platforms and
tools are stable only over modest periods of time.

some of the commercial solutions. But they also have downsides. In particular, they
may have slower release cycles, but more importantly, they rarely offer a full solution
to a problem. Open source ML solutions are generally great point solutions within a
broader context but still require that we do the work necessary to integrate them into
our environment and assemble a complete solution.

End-to-End Platforms
At the present state of maturity, essentially no ML platforms are available that provide
relatively well-integrated solutions starting with data and ending with a model that is
available in a serving system. This isn’t necessarily a huge problem right now. Models,
data processing infrastructure, human resources, and business value all evolve at dif‐
ferent paces in various ways. Orchestrating everything together to ensure sustainable
success in ML requires significant effort. But again, here, the decision drivers are
different, now based on the fundamentals of the organization’s data approach:

Long-term or one-off data initiatives
ML tools and technologies are evolving, with no sign of reducing the pace of
innovation. This presents a serious problem, similar to the one that we have
seen in other contexts: technology investments must have time to pay off. And
if the utility of a platform is gone before we have finished getting the implemen‐
tation cost out of it, we may realize that we’ve made a mistake. While this has
sometimes been a significant concern with distributed computing or data storage
platforms, it is particularly difficult in the ML space, where tools and technolo‐
gies may become obsolete in the time it takes to properly implement them.4 If
the initiative is meant to be long-term, acquiring a full platform able to accom‐
modate the fast-evolving data technologies may be relevant, while for short-term
initiatives, it may be possible to assemble based on today’s components.

Expected scale of the data initiative
On small-scale ML projects, little overarching cohesion or coherence is required,
which leads to a more natural “build” scenario. If the broader vision is to expand
data to augment a significant part of the organization’s activity, it will require the
inclusion of many skills and company processes to successfully execute on that
vision. In this case, a buy approach is likely more relevant.
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For example, commercial ML platforms not only allow teams to complete one data
project from start to finish one time, but also introduce efficiencies everywhere to
scale. That includes features for the following:

• Spending less time cleaning data and doing other parts of the data processing•
flow that don’t provide direct business value

• Smoothing production issues and avoiding reinventing the wheel when deploy‐•
ing models on a daily basis

• Improving documentation and reproducibility to ease compliance with some•
regulatory requirements

Scoring Approach for Making the Decision
Once we are clear on the problem we’re trying to solve and that we need ML
specifically to solve the problem, at a minimum we need to consider each of the
following factors to evaluate whether building or buying ML is the right choice for
the business:

Alignment
How well does the product or technology meet our needs? Are our objectives
met? Are customizations required? Are data privacy and security requirements
met?

Investment
Is there a specific net present value (NPV) or ROI that must be achieved? What is
the total cost of ownership including human capital, software, and hardware?

Time
How fast can we develop and deploy the solution in production?

Competitive advantage
Does the technology provide an asset or IP that is proprietary? Does this IP offer
increased value to customers, employees, and investors?

Maintenance and support
What is the effort and cost of support for human resources, hardware, and
software?

We can make a decision about which parts of our platform to build or to buy based
on our weight of each of these factors.

Making the Decision
Whether building or buying, incorporating ML technologies as a key business tool is
a strategic decision that should not be made quickly or without all the components in
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place to support either endeavor. It’s important to carefully evaluate how a decision
will affect the company’s long-term goals and roadmaps.

Additionally, don’t forget to convene with key stakeholders to review decision criteria
and determine the pros and cons. We discuss more details on the roles and responsi‐
bilities of various teams and key stakeholders in Chapters 13 and 14. It’s essential to
include your leadership, product, and sales teams to gather consensus and feedback
for effective change management. Finally, talk to various vendors to weigh in on the
options. Be transparent with them and get their honest opinion about your choices
and situation. We could achieve the results through either path but need to leverage
the results of the previous discovery steps to help make the right solution for the
organization’s unique needs.

Sample YarnIt Store Features Powered by ML
ML can be used in web stores like yarnit.ai to meet various business goals. ML
can increase revenue by improving conversion rates and average order value, can
increase profit margins, and can even improve customer loyalty. Today’s consumers
don’t want to be treated as one of many customers. They prefer a highly personalized
experience. Product recommendations is an area in which a lot of features can be
powered by ML models. Just as humans get to know someone and are then able
to choose what the best birthday gift for them would be, ML models can leverage
data including the product catalog, search queries, viewing history, past purchases,
items placed in the shopping cart, products recommended on social media, location,
customer segments/buyer personas, and so on. The following are a few example
recommendation use cases.

Showcasing Popular Yarns by Total Sales
This nonpersonalized technique is not based on a user’s individual choices but rather
on collective preference. Recommendations could be displayed on the home page
based on criteria such as the following:

• The number of yarns or patterns purchased (e.g., when a new pattern is released•
during holiday season and everyone rushes to get it).

• How much time shoppers spent viewing a specific type of yarn or pattern.•
• Number of views and purchases in the user’s country or area. Often we need to•

consider cultural or seasonal aspects when operating the web store in multiple
countries or regions.
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In this example, although we may not be really personalizing the customer’s expe‐
rience, showcasing popular items by each category (yarn types, patterns, brands,
etc.) allows us to target first-time users who have no account history yet (a.k.a.
the cold-start problem). This has the obvious benefit of relying only on time-tested
database technologies, which are much more common and reliable than ML.

Recommendations Based on Browsing History
Just as its name states, users will be getting new product suggestions based on the
products they’ve already viewed. For example, if the user is searching and browsing
for “wool yarns,” we can display products by popular brands that specialize in making
wool-based yarns and patterns.

Cross-selling and Upselling
Most modern web stores have some infrastructure designed to cross-sell and upsell.
Both of these are aimed at helping users choose the best items possible while also
increasing revenue even if we’re selling to a new customer. For example, when the
customer is looking for “baby yarns” on the product page, showing cross-selling
recommendations like “Patterns featuring this yarn” and/or “Popular baby clothes
featuring this yarn” can not only help increase the average order value but also
save a lot of time for customers. Similarly, showing special discounts on bigger sizes
or bundles might help customers save money as well as increase revenues for our
business.

Content-Based Filtering
We could leverage the metadata of the products to power recommendations.
Accuracy of the metadata will have a greater impact on the quality of such
recommendations.

For example, as shown in Figure 12-2, many web stores have a “Similar products”
feature either on the product detail page or before/after checkout. In our yarnit.ai
web store, if our user is always buying “red” and “blue” yarns that are of type “cotton”
from the brand “xyz,” we could consider recommending the same color and type of
yarns from a different brand, “abc,” when the recommended items also have similar
quality ratings and “abc” is running a special sale event.
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Figure 12-2. Content-based recommendations with the “Similar products” feature

Collaborative Filtering
Collaborative filtering might be considered the most popular of all product recom‐
mender methods. This technique relies solely on how other users have positively
interacted with a product (either a view or a purchase or a positive rating on a pur‐
chase). The method stems from the idea that people with similar past preferences will
probably like the same things in the future too. On top of this, it trusts real choices
people have made as opposed to simple ratings, which can be just an estimated guess.

For example, as shown in Figure 12-3, user A and user B have similar personas in
terms of their browsing and purchase histories as well as product feedback on the
web store. Using the persona similarities, when user B is on a “blanket yarn” product
details page, we could show the tools and accessories like “markers” and “needles”
that were bought by user A along with the same “blanket yarn” product. Because both
users have similar tastes/personas, showing them contextual and relevant recommen‐
dations would improve not only the user experience but also the chances to upsell,
which directly impacts the overall revenue for the business.

Most major web stores use both the collaborative and content-based filtering tech‐
niques to improve the accuracy of the personalized recommendations. To evaluate
whether a recommender model will work, we can do a simple A/B test by starting
with a couple of predictions and a hypothesis like “This algorithm will improve
engagement and/or conversion by x%”(multivariate testing is also an option). Each
alternative will be based on a separate recommender technique.
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Figure 12-3. Product recommendations using collaborative filtering

Conclusion
For ML projects to have a massive business impact, PMs and business owners need
to be relentlessly focused on asking the right questions at every stage. Rather than
dive directly into technical details and ML implementations, teams must ensure they
understand the business problems and goals as specifically as possible. This requires
speaking with stakeholders and translating the needs into technical requirements.
Once the business goals are understood, we must first assess whether ML is really
needed to achieve those goals. If ML is the solution, the very next question that needs
to be answered is whether we should integrate with an existing solution provided
by an external service provider (buy) or invest in building the ML systems ourselves
(build). In either case, a lot of planning and coordination is needed to integrate the
ML solutions into customer-facing products.

Clearly defining business goals and measurable product metrics, choosing appropri‐
ate measures of success, and deploying solutions iteratively are each important steps
toward building great ML products. But ML has a host of other requirements, many
of which are different from the requirements of traditional software application
development. Success here looks like having a high degree of awareness of the new
situation that ML presents you with, while keeping a clear eye on what is actually of
business benefit, and driving toward that—potentially over bumpy roads.
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CHAPTER 13

Integrating ML into Your Organization

Integrating any significant new discipline into an organization often looks more like
an exercise in irregular gardening than anything else: you spread the seeds around,
regardless of whether the ground is fertile or not, and every so often come back to
see what has managed to flourish. You might be lucky and see a riot of color in the
spring, but without more structure and discipline, you’ll more likely be greeted by
something barren.

Getting organizational change right is so hard for plenty of general reasons. For
a start, an effectively infinite amount of material is available on how to change
organizations and cultures. Even choosing from this plethora of options is daunting,
never mind figuring out how best to implement whatever you settle on.

In the case of ML, though, we have a few domain-specific reasons this is true, and
arguably these are more relevant. As is rapidly becoming a cliché, the thing that is
fundamentally different about ML is its tight coupling with the nature and expression
of data. As a result, anywhere there is data in your organization, there is something
potentially relevant to ML. Even trying to enumerate all the areas of the business that
have or process data in some way helps to make this point—data is everywhere, and
ML follows too. Thus ML is not just a mysterious, separate thing that can be isolated
from other development activities. For ML to be successful, leaders need a holistic
view of what’s going on, and a way to influence what’s being done with it—at every level.

What is particularly frustrating and counterintuitive about this situation is that
almost every change management methodology recommends starting out small, in
order to manage the risk of trying to do too much at one time. Though this is greatly
sensible in most cases, and your first ad hoc experiments can generally be done
without too much overhead, success in a small pilot guarantees nothing about how
ML implementation on a larger scale might work well. Avoiding siloization is hard
enough in most organizations, but is particularly crucial for ML.
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1 For what it’s worth, we don’t venerate leaders who are continually involved in the details—sometimes it’s
better and sometimes it’s worse—but we do believe that it’s necessary for leaders to understand the trade-offs
at this point in ML’s evolution. At the very least, organizational leaders need to know the business metric
being optimized and need to have a means of measuring whether the ML system is optimizing that metric
effectively. Understanding some of the details of the implementation as well as the process for measuring the
effectiveness will allow leaders to do so with confidence.

However, there is good news: it is absolutely practical to start small, to grow a
successful pilot, and to make sure the opportunities and risks of ML are handled
correctly as you grow. But you have to be deliberate about the way you do it, which is
why we should talk about our frameworks and assumptions first.

Chapter Assumptions
We have written this chapter with assumptions that we would like to make clear
before we begin. Each is detailed in this section.

Leader-Based Viewpoint
Our first assumption—which might already be clear—is that this chapter and Chap‐
ter 14 are unapologetically written for the organizational leader. Though there are
points of relevance to data scientists, ML engineers, SREs, and so on, this chapter is
most urgently addressed to those responsible for the health, structure, and outcomes
of their organization, on a scale from a team (two or more people) to a business unit
or company (hundreds or thousands of people).

Detail Matters
Generally speaking, organizational leaders don’t engage in detail and directly with
implementation and management of any change project, except in cases of strong
need. ML needs to be a little different. As per the preceding assumption, since doing
ML well involves understanding the principles of how it works, what use it makes of
data, what counts as data, and so on, leaders need to know this before the decisions
they make are going to be sensible.

Our main observation here is that by default, leaders are not going to pick up
ML-relevant knowledge as part of their regular management activity, and so there
needs to be an explicit mechanism for doing so. This is in opposition to the bulk
of conventional managerial theory, which asserts that most teams can be managed
effectively with a handful of representative KPIs and a good understanding of team
dynamics. We currently believe that ML is sufficiently complex, new, and potentially
impactful that being aware of the details matters—though we expect this will change
as time goes on.1 For the moment, though, leaders need to understand ML basics and
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be able to access practitioners, which in turn will help them assess the likelihood of
success, and make outcomes better.

Outside of training programs, our main recommendation to achieve this level of
understanding is that ML should not be siloed, either as a standalone technology-
driven effort, or in any other way. Given it can touch everything, a strong siloization
would invert the flow of information and control, and could introduce big risk
management problems. ML is naturally a horizontal activity.

ML Needs to Know About the Business
Our third assumption is that the complexity of the business is a direct input to
how ML is conceived and implemented. It’s not just about including ML folks in
department circulars about goals and performance—it is much more pervasive and
holistic than that. ML practitioners need to be more aware of broad business-level
concerns and state than the average product developer.

A couple of examples will make this clearer:

Example 1
An ML developer at YarnIt wants to make a business impact, specifically on
the web sales part of the business. They work to build a model identifying
products that are underperforming in terms of sales. The model recommends
these products in particular contexts in order to increase their sales. A model like
this might be successful in a variety of ways. It might identify new purchasers
for these products or simply remind people who used to purchase these products
that they might want to purchase them again.

But now there’s a problem in our case: it manages to find cashmere wool yarn,
a prestige item that YarnIt has in very low supply. Since this model does not
have features for (can’t effectively represent or understand) margin or inventory,
it manages to sell all of it. Cashmere yarn is in short supply in the industry,
and replacing it will take weeks, or even months. Although very few customers
purchase this yarn in large quantities, many of them may buy a little bit from
time to time as part of larger orders. Another effect that you sometimes see in
ecommerce is that when a web shop doesn’t have a particular thing in stock,
customers sometimes take their whole order elsewhere—and YarnIt experiences
this too. So now YarnIt is losing sales on other products because of their lack of
stock on this product.

Example 2
Another case exposes a cross-organizational privacy and compliance problem.
The recommendations and discovery teams train models to help customers get
the most out of the yarnit.ai site and help YarnIt make the most money from
customers. Among the features that the models use is information about the
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browser the customers are using to access the website, so the team uses a limited
set of information from the User-Agent string provided by the browser—just
enough to determine the browser and platform.

Meanwhile, the web design team has been working on new interactions and
wants a better sense of what browser configurations customers are using. To get
all of the information required, the team decides, without talking to the ML folks,
to just log and track the full browser information. As a result, the modeling teams
start using the full browser User-Agent in their models without knowing it.

The problem is that the full contents of the User-Agent plus location information
(that the model also has) often uniquely identify a single person. So now we have
a model that has the ability to target individual people. This violates some privacy
governance policies of YarnIt and compliance requirements in the countries
where YarnIt operates as well, posing a serious risk for the whole organization.

In both of these cases, the individual teams did nothing wrong in their context. But
acting on incomplete information about the effect of their choices on other teams
led to bad outcomes. As a result, leaders need to be aware of how ML functions in
their organization, so they can provide the vital coordination and broad oversight
that would otherwise be missing. The big question is really how best to provide this.

Here is one structural way to think about it: you need to be able to centralize the
portions of the ML work where oversight and control are most important, to liberate
those portions of the work where domain-specific concerns are most important,
and to provide an integration point where these workstreams can meet. It is at that
integration point that oversight, steering, and communication should take place.

The good news is that most organizations already have some venues where cross-
cutting conversations take place. If you are lucky, it will be natural for such conver‐
sations to take place within (for example) product management, where customer
lifecycle management is a normal matter of concern. If it will not fit into an existing
meeting, workstream, or venue of some kind, you will have to create a new one.
But, however it is implemented, you will need to have these kinds of conversations
going on.

The Most Important Assumption You Make
We base our material on all of the preceding assumptions. However, your organiza‐
tional change effort also has assumptions—even, or especially, if you think it doesn’t
—and those assumptions are close to you and therefore may ultimately determine the
success of your ML effort.

The most important one, the one that’s hugely valuable to examine before you
embark on your ML journey, is strongly related to the question of what you’re trying
to achieve with your ML project. It is what you assume ML can do for you.
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2 This observation isn’t limited to for-profit businesses. Leaders looking to implement ML often hope for it to
improve the thing they already do: make more money, give out more food, pay for more housing. ML can do
these things, but it can also transform the way you think about running the organization as a whole.

3 During the writing of this book, a prominent bridge collapsed in Pittsburgh, Pennsylvania, where some of
us live. Although the main problem with physical infrastructure in the US is simply that the country doesn’t
spend enough money, it is also true that prioritizing where to spend limited resources might be amenable to
an ML application.

The Value of ML
ML can do more for your business than just make you more money.2 Implementing
ML could mean that you could improve civic engagement, raise more funds for
disaster relief, or figure out which bridges most urgently need maintenance.3 But
for business leaders, it usually means making more money and making customers
happier (and happy customers generally lead to more money for the business), or
sometimes reducing costs via automation.

As an example, let’s go back to YarnIt. The CEO started hearing about ML some years
ago. Some of the early ideas for how to put ML to use included the following:

• Power the search results on the website by including a model of which products•
a given customer (or web session owner if they weren’t logged in) was likely to
purchase, given their previous behavior and interest.

• Help customers discover new products, including devoting a substantial portion•
of the front page to those selected by a model purpose-built to do so.

• Manage inventory. ML can model the supply chain constraints and inventory•
levels and propose optimal reordering for products to ensure that YarnIt has
stock of the appropriate mix of products, given financial, sales, storage, and
supply constraints.

• Improve profitability by adding a product and order margin as a feature to many•
of the other models.

Notice that these ideas have different timescales and different levels of organizational
intrusiveness. Some of them can be easily tacked on to what is already being done and
how it’s done. Changing the ranking of the search results will probably have a meas‐
urable impact on customer satisfaction and sales, but can be done relatively quickly
(weeks or months, not quarters or years) and will not require particular participation
from the broader organization to implement. Changing the way inventory and supply
chain work will take longer and will require much broader participation from other
departments. If done well, it has the possibility of really transforming the overall
efficiency of YarnIt as a company, perhaps akin to just-in-time supply chains. But it is
not a change that can be led by an ML engineer.
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Even facing these implementation challenges, organizational leaders are usually
broadly sold on the value of ML. Indeed, ML has the potential to realize additional
value based on data already collected by the organization. It is the kind of once-in-
a-generation technological change that really can transform the way organizations
function—hence the necessity to examine carefully what you think ML can do for
you, figuring out what subset of that you want to achieve, and writing all that down
before you start.

Significant Organizational Risks
Suppose you have assessed what ML can do for you, decided on the specific form
it will take, written down your assumptions, and are eagerly rubbing your hands
together, anticipating the wonderful changes that are going to bring you fame and
fortune right now. “What next?” is the obvious question. Unfortunately, before we
get started, it’s as important to understand the risks as it is the value. Otherwise, you
won’t be in a position to make a well-founded decision that involves prioritizing one
over the other.

ML Is Not Magic
While most business leaders have some appreciation of the value and potential of
ML, they do not necessarily understand the risks equally well. As a result, you
can sometimes see a leadership perspective emerging that treats ML practitioners
as almost magical in what they can achieve. Yet no one—at the leadership level,
anyway—understands how or why. By misunderstanding the scope and mechanisms
of ML, leadership also overlooks the scope of the impact of those projects across the
organization. The greatest danger in this case is that the risks become invisible, or
effectively become externalities—in other words, someone else’s problem. That is a
recipe for inevitable, though perhaps arbitrarily deferred disaster.

Mental (Way of Thinking) Model Inertia
Transforming the way an organization works is never a simple proposition, and
thousands of pages have been written on that topic. Here, we confine ourselves
to saying that implementing ML is just like any other change, in that it requires
stakeholder management and obtaining buy-in from those affected, but also unlike
other changes in that the total set of stakeholders is likely to be much larger.

As a result, that component of the problem that is a function of the number of stake‐
holders (for example, the pure logistics of figuring out who needs to be involved)
obviously gets larger. More importantly, though, any component that involves persua‐
sion, communication, and, in particular, understanding the way people model the
change is also dramatically increased in importance.
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4 Westrum’s original paper is “A Typology of Organizational Cultures”. The Google Cloud Architecture Center
reviews this in the context of DevOps, but most of the points are relevant to ML production engineering as
well.

When driving a significant change, just showing up to all your meetings with the
talking points of the senior leader involved is rarely going to work. You are not
going to persuade people to change their behavior based on a characterization of the
situation that is only from a senior leader’s point of view. In particular, the key issue
is of mindset, and what mental models are used by both leaders and practitioners
throughout the organization to represent what’s going on and how to react to it. If the
plan assumes that everyone will just move to understanding things the way you (or a
certain individual) do, the plan will probably be short-lived.

But sometimes the new way of doing things is genuinely the correct way of respond‐
ing to a particular situation. If it is the correct way to proceed, and yet the mental
models are not changing, you, the changer, have to undergo the burden of persua‐
sion. To be most effective, that persuasion has to be accompanied by a motivation or
set of motivations, and those need to speak to the mental models of the audience. For
example, perhaps the audience believes there’s nothing real to be gained by spending
the effort to make the data of their teams readable by others; or perhaps they’re
scared by the prospect of being shown to be worse than other teams; or perhaps they
profoundly believe that the only thing that matters is getting product features out to
the public as fast as possible, and spending effort on literally anything else doesn’t
matter. Either way, your proposal for change will require the mental models of your
audience to be solicited, understood, and addressed.

Ultimately, for most practical concerns, implementing ML requires serious stake‐
holder management and a large concerted effort to shift mental (way-of-thinking)
models.

Surfacing Risk Correctly in Different Cultures
Obviously, if benefits are clear at the leadership level, but risks are invisible, this leads
to risk management taking place in an ad hoc, underfunded fashion, or potentially
even deliberately not taking place. Those risks could even be misrepresented, partic‐
ularly in negatively oriented cultures. It may be useful to review the organization
typology suggested by Dr. Ron Westrum in the context of software engineering
organizations to understand the implications of this situation in more detail.4

If we could simplify somewhat, Westrum suggests that organizations can be broadly
characterized as power-oriented, rule-oriented, or performance-oriented. Of these,
the only organizational culture that experiences structural problems when imple‐
menting ML is the rule-oriented, bureaucratic culture. Why? On one hand, power-
oriented organizations tend to crush novelty, and as a result are much less likely
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to implement ML on their own in any serious way. On the other hand, performance-
oriented cultures have an openness to novelty, cooperation, communication, and risk
sharing. These environments are likely to tolerate the kinds of open coordination that
successful ML implementations require.

On the contrary, rule-oriented organizations tolerate novelty but punish people when
it goes wrong. Failure leads to negative consequences for those seen to have failed,
organizations have narrow (and thoroughly defended) responsibilities, and coordina‐
tion is minimal. In these organizations, we expect that ML will be able to gain a
foothold, but when anything goes wrong or becomes difficult, those “at fault” will
be punished and the innovation will promptly cease. Unfortunately, such behavior
makes it very hard to adequately model and respond to the cross-cutting risks that go
with ML; significant losses may well result.

Siloed Teams Don’t Solve All Problems
Another common risk is for ML teams and projects to be treated equivalently to
the way other new kinds of work are treated, and a common instinct is to start
a new siloed team to do that work, leading to its separation in the organization.
This is a common way to reduce startup friction in order to build something and
demonstrate results. However, it does present a problem for ML, since implementing
it at all usually requires help from multiple departments or divisions. But more
importantly, because of the broad scope of impact that ML projects can have, success‐
fully deploying ML requires organizational change to support structure, processes,
and the people needed to keep it reliable. It is definitely possible to keep the scope too
narrow for success.

Implementation Models
Having discussed some risks involved in introducing ML to an organization, let’s
focus on the nuts and bolts—how to actually get it done.

A small implementation project probably starts with applying ML to something that
is integral to your organization’s success. This involves creating and curating data
sources, assembling teams with the right expertise in the problem space and in ML,
and making the horizontal regulation mechanisms you’ll need to track progress and
steer the ship. Throughout this process, it will probably be advantageous to proceed
with the blissful optimism that’s required when you know trouble will come find you,
eventually—though you don’t know quite when or what sort.

Start out by picking a metric of some kind: ideally, it will be something useful
but not critical in your system. That way, you can get valuable experience from
the implementation, and the work will involve assembling the cross-connections
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between teams that you’ll need for future expansion, but if things get messed up, the
likelihood of significant disaster is lowered.

Let’s consider an example at YarnIt. The implementation team will probably consider
a few options. Using ML to help with search ranking is one appealing place to start.
But the team notices that sales coming directly from the search results page represent
significant revenue. This makes this an appealing place to apply ML eventually, but
a risky place to get started. After looking for other parts of the site and seeing
that all of them are revenue sensitive or revenue critical, the team takes a different
approach: what if we add ML-produced results where there is nothing right now?
The team members look around the yarnit.ai site and notice that several pages do not
show recommendations to end users but could. They decide to add recommended
products to the cart-add confirmation page that users see when they add an item to
their shopping cart—or to put it another way, we take that moment where the users
have demonstrated their interest in one product to recommend other products.

This is a good place to start: purely additive, with low risk and at least a chance
of a reasonable return. Purchase intent is already present, and the change is not
too intrusive to existing customer workflows. So the team pursues this “People who
bought X also bought Y” model and decide to measure it by collecting click-through
rates on those recommendations and comparing them to click-through rates on
search results. Of course, once the team knows more about how to do this, another
possible option is to adopt a more traditional approach that combines looking at what
is achievable/feasible and what the expected yield would be, rather than focusing on
minimizing intervention risk.

Remembering the Goal
Though it is important to preserve flexibility, particularly in the conduct of the imple‐
mentation, we also have to remember the goal—to experiment with ML in order
to build capacity in the organization. Hopefully, you’ll achieve the business metric
improvement you selected, but even if you don’t, the project can still be successful
overall: you can still learn a lot and try another approach if things don’t work out.

But it is important to walk that delicate line between not becoming distracted by
what you encounter along the way, and not being too rigid about what you’d decided
previously.

Writing down your strategic goals, and the context that led to
those goals, can be useful to refer back to when you are amidst
troubleshooting tactical issues or handling an incident.

Implementation Models | 315



Greenfield Versus Brownfield
A fundamental question that often arises when you’re starting a new set of activities
in your organization is whether you’re doing it from nothing (also known as green‐
field) or you have an existing system, team, or business process to handle (also known
as brownfield). In practice, almost all implementations are brownfield, because most
organizations get most value out of improving a system they already have. In general,
though simplifying considerably, transformation projects go easier the more of a
greenfield situation it is or can be made to be.

A common intuition is that it is easier to build on something that already exists and
is (somewhat) functional. But in fact, a crucial measure of success for new initiatives
is how much opposition it attracts. Opposition is more commonly encountered
in brownfield situations, where someone else’s career success can often depend on
nothing changing.

For just those reasons, most implementation projects that expect to meet significant
opposition usually try to start a new team or function that covers previously uncov‐
ered responsibilities. Our view is that because of the strong interconnected nature
of ML, it is not realistic to expect that relative isolation to continue for long. Eventu‐
ally—and probably sooner than you think—you’ll talk to someone else you need to
ask permission from.

Our best guidance here, as previously, is to start with a metric that makes sense, since
that’s the easiest story to tell—successful transformations almost always require good
stories. Then use that to determine how greenfield or brownfield your project needs
to be, while acknowledging that most things are brownfield.

ML Roles and Responsibilities
Doing ML work well involves a dizzying array of skills, focus areas, and business
concerns. We find one useful way to structure this knowledge is by thinking, as
always, of the flow of data within your organization. For example:

Business analysts or business managers
These roles are responsible for the operations of a particular line of business as
well as the financial results from that line of business. They have the data and
desire needed to make ML successful, but if it goes badly, their ability to do their
job will suffer as a result of bad information.

Product managers
These roles set the direction for the product and determine how ML will be
incorporated into existing products. They help us decide what, if anything, we
will do with the data. There may also be ML-specific product managers who
guide what we implement as well.
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Data engineers or data scientists
These people understand how to extract, curate, manage, and track data as well
as how to extract value from it.

ML engineers
They build and manage models and the systems that produce them.

Product engineers
They develop the products that we are trying to improve with ML. They help us
understand how to add ML to the product.

SREs for ML or MLOps staff
They lead the overall reliability and safety for the deployment of ML models.
They improve existing processes for building and deploying models, propose
and manage the metrics to track our performance over time, and develop new
software infrastructure to enforce model reliability. These roles wrap around the
entire process and are some of the only engineers looking at the process from end
to end.

Each of these roles may be combined with others in a smaller organization. They are
functions to think about filling.

How to Hire ML Folks
Hiring talented ML staff is difficult right now and is likely to stay difficult for the
foreseeable future. The growth of demand for ML skills has far outstripped the supply
of educated, experienced staff. This affects all employers, but the most prestigious
of ML companies (generally large tech organizations) continue to hire most of the
new graduates and experienced staff. This leaves other organizations in difficult
circumstances.

The usual recommendations for how to proceed in this case include options like
attempting to reach potentially qualified candidates earlier in the cycle, making sure
that the operation of the recruitment process is generally strong, communicating with
the candidate regularly, selling the candidate on the advantages that the company in
question has, and so on. While all of those are true, useful, require effort, and might
well work for you, they are standard approaches. If the market is particularly hot,
doing all of those well still might not work.

We recommend another approach. Reframe the problem as dividing staffing between
those who really require ML knowledge and experience immediately, and those who
can learn it on the job as they go. Most situations, and indeed startup programs,
require only one or two experienced ML researchers or practitioners. These experi‐
enced employees can help design models to meet the organization’s goals and can
also specify the systems needed to build and deploy those models. But the staff
needed to manage the data, integrate ML into the product, and maintain the models
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in production can all be folks who are talented in other ways, but are learning ML
deeply on the job. (You can even buy books like this to help bring those employees up
to speed more quickly!)

So, having partitioned the problem, we still have the question of how most organi‐
zations can hire those first few experienced ML researchers and engineers to seed
this process. The standard playbook involves a mix of hiring contractors or consul‐
tants from experienced firms, paying for a single superstar with real experience
and credentials who is willing to teach, and betting on junior rising stars, while
understanding that the path will be bumpy. These are practical options when your
organization has a desire to produce ML but does not have prestige or money to
compete against bigger firms.

Now that we’ve considered some of the concrete challenges that organizations face
adapting ML specifically, let’s take a step back and consider the problem from the
perspective of traditional organizational design.

Organizational Design and Incentives
Making an organization function well, given what it is supposed to do—often called
organizational design—is a difficult art that involves a mixture of strategy, structure,
and process. The key point for leaders is that reporting structures are often the
least important part of successful organizational designs. Other much more powerful
aspects and determinants affect behavior.

Before we dive in even deeper, it is worth acknowledging that organizational design is
a technical and often jargon-filled topic. For some leaders, especially those at smaller
organizations, it may be difficult to see the forest for the trees in the proceeding
sections. Talk of strategy and process and structure can be difficult to map onto the
main actual tasks: hiring the right people and getting ML added to your application.
Ultimately, though, the main lesson is that thinking about the way your organization
currently works, and how that will change, hugely improves your chances of doing
ML successfully.

We can choose from numerous models to understand how to change an organization
in order to achieve a certain goal. This section is not designed to provide a complete
review of all of them. Rather, we will select one common approach to thinking about
organizations, the Star Model by Jay R. Galbraith, and apply it specifically to the
challenge of implementing ML in an organization (Figure 13-1).
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5 “Kind of reasonable most of the time” ML can actually be an improvement on existing algorithmic deploy‐
ments in a variety of situations.

Figure 13-1. The Star Model (© Jay R. Galbraith. Reprinted with permission.)

In this model, strategy, structure, processes, rewards, and people are all design poli‐
cies or choices that can be set by management and that influence the behavior of the
employees in the organization.

This model is useful because it goes beyond the reporting structure or organization
chart, where most leaders tend to start and end their change efforts. Galbraith points
out that “most design efforts invest far too much time drawing the organization
chart and far too little on processes and rewards.” This model allows you to take
that observation and then think about whether all of the interconnected aspects are
affected or can be changed to support the requirements better. Policies, processes,
people, and rewards policies can then be adjusted to support your structure and
strategy.

Let’s review each of these in the context of an organization trying to implement ML.

Strategy
The strategy is the direction that your organization is trying to go. It drives your
business or organizational success model. It affects which parts of the organization
are given attention or funded, and how the organization is measured or considered
successful.

“Best-in-class machine learning for the yarn distribution industry” could be a strat‐
egy that identifies ML as a primary focus for YarnIt, but also might limit where ML
is deployed if we insist on only “best-in-class” ML.5 Another strategy of “machine
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learning in all aspects of the product” might mean the organization funding new
and innovative ways of using ML everywhere, with more tolerance for lower-quality
results to start with. On the other hand, if we set a strategy to “increase sales by
diversifying approaches including the use of ML,” we might consider it as more
experimental or less important than other more traditional ways of increasing sales.

Structure
Structure describes who has power in an organization. You may also think of it as
the organization chart or reporting structure because it identifies formal oversight
authority. (It can be very different, of course; in other places, the authority may lie
within the team, where certain technical leaders must support a decision before it is
implemented.)

One way to think about choices for organizational structure, and the one that Gal‐
braith identifies, is that it includes functional, product, market, geographic, and
process structures:

Functional
This structure organizes the company around a specific function or specialty (for
example, centralizing ML implementation in a single team).

Product
This structure divides staff into separate product lines. In this case, the ML teams
would be distributed into the individual product teams.

Market
The company is organized by the customer market segment or industry they sell
to. For YarnIt, this might be by type of crafter (knitter, weaver, or crocheter).

Geographical
This structure organizes by territory: the product has a dependency on region,
location, or even distribution economics (such as where the food comes from).
The only obvious reason to consider this structural approach for ML would be
governance and compliance with local laws. This is probably not how we would
structure an ML implementation.

Process
Also sometimes known as a horizontal organization, this structure aggregates
power in all of the people who develop and deploy processes in an organization.
This may be a good model for ML teams that work across various product lines
but need to create standards and processes for the organization.

Leaders will generally have a mental model for the way the organization works and
the approach they should use to effectuate change. For example, think of a mental
model that, to start a new function, the senior leader must be hired first. With this

320 | Chapter 13: Integrating ML into Your Organization



mental model, a leader will tend to centralize ML functions around a specific senior
leader—and this has obvious drawbacks if the right leader is not to be found, or
centralization doesn’t fit well with (say) the existing engineering culture. Similarly, a
siloed ML function might work better for senior leaders to maintain control of, but
would inhibit progress of ML on other engineering teams. Ultimately, leaders will
probably need to shift their mental model of the way things work, depending on the
chosen ML strategy. (No one-size-fits-all structure exists, though for those desiring a
this-size-fits-some approach, we cover structure implementation choices in detail in
Chapter 14.)

Processes
Processes constrain the flow of information and decisions through an organization,
and hence are critical to the way ML will work. They can be used to address issues in
the structure as necessary. The Galbraith framework defines two types of processes:
vertical processes allocate scarce resources (e.g., budget), and horizontal processes
manage workflows (e.g., customer order entry and fulfillment end to end).

One potential way to begin adding ML to your organization is to treat the introduc‐
tion as a vertical process, with decisions made centrally but implemented throughout
the organization. That works well if the leaders have mastered their dependencies
and connections. If that’s not the case, you can get disconnected decisions. For
example, if we fund an ML training and serving team to add a new ML feature to our
application, do we also fund teams to curate all of the data, or to handle model quality
measurement over time or fairness? If we do, we might end up duplicating centralized
functions in our local scope, which is inefficient and potentially friction-increasing.

Once the organization has several ML projects implemented, centralizing the infra‐
structure from those projects to fulfill specific workflows may add robustness and
reliability. For example, many model teams will start by providing their own infra‐
structure end to end, but eventually we might have many modeling teams providing
models that integrate into our application. At that point, we could centralize serving
for some of those models, think about building a central feature store, and so start
establishing common aspects of the ML organizational infrastructure regardless of
the model team.

Rewards
Rewards are both financial and nonmonetary. While most organizations will find it
difficult to compete for ML talent on a financial basis alone, it might make more
sense for an organization to compete on mission, culture, or growth. Most employees
value recognition, status, or career opportunity. They also value applying their skills
autonomously to create something of value. The autonomous part is tricky because
ML staff need to be independent, but it is also critical that they be subject to the
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kind of governance that the organization needs to ensure that the ML it deploys is
fair, ethical, effective, and compliant with relevant laws. Aligning rewards to not just
raw execution of business goals, but also reliability, fairness, and robustness will help
create the right incentives to not overlook these areas.

One other surprising point should be noted about rewards for ML skill and knowl‐
edge. Recall that ML is likely to impact most parts of our organization. One thing
that should be considered is rewarding staff throughout the organization for learning
more about ML. If the sales staff, accounting staff, buyers, and product managers all
have a basic education in ML, the organization may well be much more effective in
the long run.

We expect that ML expertise will continue to be scarce indefinitely into the future,
with consequent effects on compensation, difficulty of hiring, etc.—see “How to Hire
ML Folks” on page 317 for suggestions for active approaches here.

People
Finally, we need to consider the collection of factors that influence the human beings
in our organization. This includes the mindsets and skills that those people need.
It also includes human resource policies of recruiting, selection, rotation, training,
and development of people. For example, flexible organizations need flexible people.
Cross-functional teams require people who can cooperate with each other and are
“generalists” that understand multiple aspects of the organization.

Given how rare ML education and skills are at present, most organizations should
consider hiring staff who can learn on the job rather than only those already quali‐
fied. While this is true across the map of ML staffing, it is especially true in the
territory of SRE. An ML production engineer benefits much more from solid reliabil‐
ity and distributed systems skills than they do from ML skills. In these roles, ML is
the context in which the work happens, but not always the content of that work.

Finally, the organization will need people who can work through the ambiguity of
problems caused by ML without stopping at a root cause of “the ML model said
so.” That’s a fine place to start, but people will need to be able to think creatively
about the way ML models are built, how changes in the world and in the data impact
them, as well as how those models impact the rest of their organization. Some of that
perspective and approach will come from ML education and skills, but some comes
from a curious and persistent approach to problem-solving that not everyone starts
with.

A Note on Sequencing
The preceding topics were separated out for clarity of explanation and ease of
illustration. Though separation of concerns is a powerful technique much used in
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computer science, in real-world organizational work, everything is entangled and
intertwined in a way that can often make it practically impossible to change things
by just exerting control over a single dimension. The good news is, it often turns out
that’s what you want.

Changing one single dimension of the preceding Star Model elements is unlikely
to result in success by itself. A strategy change divorced from process change will
almost certainly result in just effectively the same output. Swapping in a new set of
people who will learn the old culture has a good chance of developing a new set of
workers who will behave as the old ones did. Financially rewarding new behavior
while still allowing old behavior to be easy to accomplish (because all the processes
are optimized for that) won’t change anything in and of itself. And so on; the grim
reality is, successful change often relies on pushing across many fronts in parallel.

However, you don’t have to move forward at the same pace across all of these fronts at
the same time, or with the same intensity. That’s the second piece of good news—you
can sequence this. Announce you’re changing strategy, then processes, then rewards.
Deal with them one at a time, but touch them all—at least, the ones that matter for
your organization. Tell everyone the timescale you’re following and the criteria you’re
using to evaluate success. Communicate your intentions, but acknowledge that not
everything is going to change at once—it won’t—but loudly and publicly commit to
the overall goal. That increases credibility for the change and gets you supporters
inside the organization.

Conclusion
We can’t provide context-free recommendations for which precise dimensions of
change to push on, since so much depends on your local situation. However, we can
recommend at least thinking about the following:

• What does the organization care about? Driving change by trying to accomplish•
something the organization doesn’t care about is more likely to be ignored, but
also much less likely to get resources. Your work is overall more likely to be
successful if you’re aligned with those concerns.

• What are people doing today, and how does it need to change? Many plans•
for change originate from high-level staff disconnected from the day-to-day
experiences of other staff members. Your change plan will have a much better
chance of success if you take a step back and look at what they do and why they
do it.

• How easy will it be to do the new thing rather than the old thing? If the new thing•
is harder to do than the old thing, everyone may well agree it’s vitally important
to do it, but the change will be slower and more difficult, if it happens at all.
Make it easier to do the right thing and harder to do the wrong thing.
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• Finally, acknowledge that change will take time. As we’ve said, displaying organ‐•
izational vulnerability not only gets you more support from people who appreci‐
ate realism, but also allows people to manage their own reaction to the change
better. Just don’t forget to keep a regular communications cadence up: a big-bang
announcement followed by nothing for ages often causes people to wonder
whether the momentum has stalled.

If you want to see worked examples of the preceding points, see Chapter 14.
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CHAPTER 14

Practical ML Org Implementation Examples

Organizations are complex entities, and all of their different aspects are connected.
Organizational leaders will face new challenges and changes in their organization as
a result of adopting ML. To consider these in practice, let’s look at three common
organizational adoption structures and how they apply to the organizational design
questions we have been considering.

For each of these scenarios, we will describe how the organizational leader has chosen
to integrate ML into the organization and the impact of that choice. Overall, we will
consider the advantages and likely pitfalls each choice has, but in particular, we’ll
consider the way that each choice affects the process, rewards, and people aspects
(from the Star Model introduced in Chapter 13). Organizational leaders should be
able to see enough details in these implementation scenarios to recognize aspects
of their own organizations, and be able to map these into their own organizational
circumstances and strategies.

Scenario 1: A New Centralized ML Team
Let’s say that YarnIt decides to incorporate ML into its stack by hiring a single ML
expert who develops a model to produce shopping recommendations. The pilot is
successful, and sales increase as a result of the launch. The company now needs to
make some decisions about how to expand on this success and how (and how much!)
to invest in ML. The YarnIt CEO decides to hire a new VP to build and run the ML
Center of Excellence team as a new, centralized capability for the organization.

Background and Organizational Description
This organizational choice has significant advantages. The team can specialize, ample
opportunities for collaboration and working together exist, and the leadership has
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clear scope to prioritize the work on ML across the company. Reliability experts can
be in the same organization if their scope is limited to ML systems. The centralization
also creates a significant nexus of influence: the leaders of the ML organization have
more standing to advocate for their priorities across all of YarnIt.

As the group grows and the projects diversify, more of YarnIt will need to interact
with the ML organization. This is where the centralization becomes a disadvantage.
The ML team cannot be too distant from the rest of the business, as it will take
the team longer to see opportunity, to deeply understand the raw data, and to build
good models. An ML team siloed away from individual product teams is unlikely
to be successful if it doesn’t have the support of those product teams. Even worse,
placing these two functions (ML and product development) completely separately
in the organizational chart might encourage the teams to be competitive instead of
cooperative.

Finally, a centralized organization may not be usefully responsive to the needs of
the business units requesting help to add ML to their products. When it comes to
productionizing ML, the business units likely will not understand the reliability needs
of the ML teams and not understand why reliability processes are being followed
(thus slowing delivery).

While these pitfalls exist for a solely centralized ML team, the organization can always
evolve. This scenario goes through the Star Model as if it uses only a centralized team,
but we will also illustrate an evolution of a centralized team doing infrastructure
in scenario 3. Another possible evolution is that the centralized team educates and
enables others to increase ML literacy within the rest of the organization.

Process
As we have mentioned, the impact of introducing ML in an organization tends to
be pervasive. To address some of the disadvantages of the centralized organization,
introducing processes can help distribute (or decentralize) decisions or knowledge.
These processes include the following:

Reviews by key stakeholders
These reviews, presented by the ML team on a regular basis, should ensure
approval of the current modeling results as well as an understanding by business
leaders of the way the system is adapting to the business. A separate science of
exactly which metrics to include in these reviews is necessary, but the metrics
should be complete and need to include the improvements as well as the costs of
any given model implementation. Key business stakeholders may also review the
priority of the various ML team efforts as well as the ROI and use cases for those
efforts.
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1 In most of the literature, this is presented as an algorithmic or technical problem. Of course, it is those things
but it is also very much an organizational problem. If we don’t have the decision and management framework
to evaluate changes separately and strategize about how to deploy them, we will not be able to correctly
prioritize that work.

Independent evaluation of changes
One issue that can crop up in a centralized ML team is that all the changes
become dependent on one another and may be held up by other changes. If
the team instead evaluates the changes independently, ensuring accuracy of each
model as it changes production by itself, then changes can be available more
quickly. Often a model may improve performance on average but may hurt
performance on specific subgroups. Judging whether these trade-offs are worth
it can often require significant analysis and digging, and may require judgment
based on business goals that are not easily reflected by simple metrics like predic‐
tive accuracy.

De-risked testing of combinations of changes
In large model development teams, several improvements often are developed
in parallel and these then might be launched together. The question is whether
the updates play well together. This creates a need to test candidate changes
in combination, in addition to individually.1 The caveat is that it might not be
possible to test all combinations (because of resource/opportunity cost). It is
important to create a process to vet candidate changes, and to determine which
are useful to test in combination. This may be in the form of a go/no-go meeting
to discuss model launches and how the teams are testing in combination with
other changes. The meeting may then facilitate further testing or a decision to
launch.

While this is easier in a centralized ML model team, introduce processes so that peo‐
ple from the various business units can also evaluate the changes. For the centralized
ML team, this may be the product/business team that requested a change or feature,
or the support team that may be affected by the changes.

Rewards
To ensure a successful implementation of the ML program, we need to reward
interaction between business and model builders. Staff members need to be evaluated
on the effectiveness of their cross-organizational collaboration and alignment to
business outcomes rather than simply the effectiveness of accomplishing the narrow
mission of their own department or division or team. Seeking input and formal
reviews by other organizations, providing feedback, and communicating plans should
all be rewarded behaviors. The way these are rewarded is culturally dependent per
organization, but they should be recognized.
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Rewards may be monetary (bonuses, time off) but can also include promotions
and career mobility. At YarnIt, we might add evaluative characteristics like “effective
influencer” to the characteristics we look for in successful employees.

People
An experimentation mindset in product leaders is required, both to appreciate the
value created by ML as well as to tolerate some of the risks. Product leaders need
to understand that tuning the ML model for the organizational objectives may take
some experimentation and that negative impacts will almost certainly occur along
the way.

Bigger Isn’t Always Better
The YarnIt ML team begins work on a project whose success definition is to create
bigger carts (shopping carts containing more products worth more money). The
idea is to increase the number of large purchases, since customers who make large
purchases are more profitable to the organization. The team measures its success by
the size of the shopping cart created per user impacted by the new model, since that’s
the metric the team has easily available.

A problem arises: the new larger carts are abandoned at a much higher rate than
expected. Users seem to be creating large carts but then never checking out and
purchasing the products. This cart abandonment rate is escalated to a senior leader
in sales who starts troubleshooting the problem immediately, first with the web and
payments teams (might be a UI problem or payments processing problem) and then
ultimately with the ML team.

Together they develop a theory of what might be happening: the ML model is success‐
ful at convincing users to put more in their carts, but some users balk when they see
the total size of the purchase and decide to abandon the cart instead of purchasing
some of the products they can afford. At this point, everyone can collaborate on a
solution.

Sales can generate an acceptable target for cart abandonment for the ML team to
include in its model optimization, the web UI team can think of ways to make it easy
to check out parts of a cart rather than a whole cart, and the product team can think
about remarketing to users who abandoned carts, asking whether they might want to
purchase just some of the products. And overall the ML team can evaluate whether
the “large carts”’ effort did, in fact, optimize revenue.

The end result will be happier users and a more profitable YarnIt, but only by work‐
ing through this set of challenges rather than simply rejecting the poorly performing
ML model right away.
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YarnIt, and all organizations implementing ML, need to hire for a mindset of nuance
in order to be successful. Leaders need to be tolerant of complexity and comfortable
working across organizational boundaries even outside their own scope of authority.
Notably, leaders also must have the confidence to represent the complexity of these
impacts, without overly simplifying or sanitizing, upward to their leadership. YarnIt’s
CEO does not need to hear that ML is magic and will solve all problems, but instead
how business objectives are being achieved with ML as a tool. The goal is not to do
ML but to move the needle for the business. While ML is powerful, the nuance of ML
is to derive value by minimizing the negative impacts.

The people in this centralized team need to be trained about quality, fairness, ethics,
and privacy issues if they do not already have expertise in these areas.

Default Implementation
An oversimplified default implementation of the centralized model is as follows:

• Hire a new leader with ML modeling and production skills.•
— Hire ML engineering staff to build models.—
— Hire software engineering staff to build ML infrastructure.—
— Hire ML production engineering staff to run the infrastructure.—

• Establish implementation plans with product teams (source of data and integra‐•
tion point for new models).

• Establish regular executive reviews of the whole program.•
• Plan compensation by successful implementation and compensate both ML staff•

and product area staff.
• Start a privacy, quality, fairness, and ethics program to establish standards and•

compliance monitoring for those standards.

Scenario 2: Decentralized ML Infrastructure and Expertise
YarnIt might decide to invest in several experts across the organization, rather than a
single senior leader. Each department will have to hire its own data scientists, includ‐
ing the shopping recommendations and inventory management teams. Essentially
YarnIt will allow data science and simple implementations of ML to appear wherever
there is sufficient demand and a department is willing to pay for it.

Background and Organizational Description
This approach is much faster, or at least it is faster to get started. Every team can
hire and staff projects according to its own priorities. The ML experts as they are
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hired will be close to the business and products, and will thereby have a great
understanding of the requirements, goals, and even politics of each group.

There are risks. Without a central place for ML expertise, especially in management,
developing a deeper understanding of what YarnIt needs to do to be successful at
ML will be harder. Management will not understand what specialized tools and
infrastructure will be needed. There is likely to be a bias for trying to solve ML
problems with existing tools. It will be hard to understand when the ML team is
advocating for something it really needs (model-specific quality-tracking tools like
TensorBoard), as opposed to something that might be nice to have but may not
be required (GPUs for some model types and sizes or cloud training services that
offer huge scale but also large costs). Additionally, each team will repeat some of the
same work: creating a robust and easy-to-use serving system that can share resources
across multiple models, and monitoring systems to keep track of training progress for
models and to ensure they complete training. All of this duplication can be expensive
if it is avoidable.

If some of these teams are doing work that spans the other products, and they prob‐
ably will be, troubleshooting and debugging become much harder. When product
or production problems arise, YarnIt will need to figure out which team’s model is
responsible or, worse yet, get multiple teams together to debug an interaction among
their models. A proliferation of dashboards and monitoring will make this exponen‐
tially more difficult. Uncertainty about the impact of any given model’s change will go
up.

Finally, YarnIt will struggle to ensure that it has a consistent approach. In terms of ML
fairness, ethics, and privacy, just a single bad model can harm their users and damage
our reputation in public. YarnIt also may be duplicating authentication, integration
into IT, logging, and other DevOps tasks with this organizational structure.

While real trade-offs exist, this decentralized approach is exactly the right one for
many organizations. It reduces startup costs while ensuring that the organization gets
targeted value out of ML immediately.

Process
To make this structure effective, organizations should focus on processes that can
introduce consistency without introducing too much overhead. These processes
include the following:

Reviews by senior stakeholders
Model developers should still participate in reviews by senior stakeholders. It is a
really useful practice for model developers to create write-ups of each proposed
model development objective and finding that they come up with. These internal
reports or whitepapers, while short, can record in some detail the ideas that have
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been tried and what the organization has learned from them. Over time, these
create organizational memory and enforce rigor in evaluation similar to the ML
equivalent of the rigor in a code review for software engineers. YarnIt should
create a template for these reports, possibly generated by collaboration among
some of the first groups to start using ML, and a standard schedule for reviews
by a small group with representatives beyond just the organization implementing
ML.

Triage or ML production meetings
ML model developers should meet weekly with production engineering staff and
stakeholders from the product development group to review any changes or
unexpected effects of the ML deployments. Like everything, this can be done well
or poorly. A bad version of this meeting may not have all the relevant points
of view, might be based on incidental problems rather than well-understood
systematic ones, might delve too much into problem-solving, or simply might
last too long. Good production meetings are short, focus on triage and prioritiza‐
tion, assign ownership of problems, and review past assignments for updates and
progress.

Minimum standards for technical infrastructure
YarnIt should establish these minimum standards to ensure that models all pass
certain tests before launching into production. These tests should include base‐
line tests, such as “Can the model serve a single query?” as well as more sophisti‐
cated ones involving model quality. Even simple changes such as standardized
URLs could help drive consistency internally (and anything that helps to make
things easier to remember and behave the same is useful in the complex, quickly
changing world of ML).

Rewards
To balance the decentralizing effects of this approach, YarnIt senior management
will need to reward consistency and published quality standards. For example, leaders
should reward employees for timely write-ups and careful reviews that are published
in a widely available corpus. Each team will have local priorities that it will tend to
prioritize, so it is necessary to reward behaviors that balance increased velocity with
consistency, technical rigor, and communication.

One specific factor to note is that in this scenario, YarnIt is less likely to have staff
with significant ML experience. One useful reward is to encourage staff to attend
(and present at) conferences related to their work.
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People
In this deployment, YarnIt should look for people who can think both locally and
globally, balancing the local benefits against possible disadvantages to the company
(or vice versa). Skills such as influencing without authority and collaborating across
organizational lines may be useful to explicitly call out and reward.

The organization will still need people who care about quality, fairness, ethics, and
privacy issues and can influence the organization—this is true in every deployment
scenario. The difference here is that in this case, these staff members will have to
develop local implementations to achieve quality, fairness, ethics, and privacy while
also developing broad standards and advocating for their implementation across the
company.

Default Implementation
Here’s an oversimplified default implementation of the decentralized structure
scenario:

• Each team hires experts in their own business units:•
— Hire ML engineering staff to build models directly with the product teams.—
— Hire or shift software engineering staff to build ML infrastructure.—
— Hire ML staff or shift production engineering staff to run the infrastructure.—

• Develop a practice of internal reports of findings for review by senior•
stakeholders.

• Establish company-wide technical infrastructure standards.•
• Run weekly triage or ML production meetings to review changes.•
• Start a privacy, quality, fairness, and ethics program to establish standards and•

compliance monitoring for those standards.

Scenario 3: Hybrid with Centralized Infrastructure/
Decentralized Modeling
YarnIt started its implementation via the centralized models, but as the organization
matures and ML adoption spreads throughout the company, the company decides
to revisit that model and consider a hybrid structure. In this case, the organization
will maintain some centralized infrastructure teams and some ML model consulting
teams in the central organization, but individual business units are free to hire and
develop their own ML modeling experts as well.

These distributed ML staff members might start by relying heavily on the central
modeling consultants but over time will grow more independent. All of the teams
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will be expected to use and contribute to the central ML production implementation,
however.

By centralizing the investment and use of infrastructure, YarnIt will continue to
benefit from efficiency and consistency. But decentralizing at least some of the ML
expertise will increase the speed of adoption and improve alignment between the ML
models and the business needs.

Note that many organizations evolve into this hybrid model. As a leader, it might be
wise to plan for this evolution.

Background and Organizational Description
The disadvantages of this hybrid implementation draw from each of the centralized
and decentralized ML organizational structures. Inefficiencies might exist in decen‐
tralizing staffing and implementing ML throughout the organization. The business
units might not understand ML well and might have particularly bad implementa‐
tions. This can be especially problematic if the failures relate to privacy or ethics.
Meanwhile, the centralized infrastructure might create friction for the decentralized
modeling teams. And, the centralized infrastructure may feel more complex and be
costlier. However, the longer the company is around, the more that the centralized
infrastructure model will pay off.

Process
One way to think about the impact of this hybrid implementation is to reconsider the
cart abandonment example in “Bigger Isn’t Always Better” on page 328. In this case,
provided the modeling team lives in the web store product team, these team members
are more likely to notice the problem quickly and to realign the metrics of the model
with sales instead of simply maximizing cart size. They will also think of possible
new features like “purchase half this yarn now, and set aside half of it for later in one
month.” In all of these cases, ML has triggered the conversation about how to be more
customer friendly.

But say the problem occurs across organizational divisions: a web store model causes
a problem for purchasing. In those cases, resolution is likely to be much slower,
as the purchasing team tries to convince the web team that the model is causing
problems. In these cases, organizational culture will have to support cross-team
model troubleshooting and even development.

Consider the processes recommended for scenario 1 and 2 to see if they may help
alleviate possible disadvantages to this implementation:

• De-risked testing of combinations of changes•
• Independent evaluation of changes•
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• Reviews:•
— ML team(s) findings documentation and review—
— Business reviews of model outcomes—
— Triage or ML production meetings—

• Minimum standards for technical infrastructure•
• Training or teams for quality, fairness, ethics, and privacy issues•

Rewards
In the hybrid scenario, YarnIt senior management should reward business units for
utilizing the centralized infrastructure, to prevent them from developing their own,
duplicative infrastructure. Centralized infrastructure teams should be rewarded for
meeting the needs of the other business units. Measuring and rewarding adoption,
while also encouraging use of central infrastructure in almost all cases, makes sense.

Central infrastructure teams should have a plan to identify key technology developed
in the business units and extend its use to the rest of the company. And from a career
development perspective, ML modelers from the business units should be able to
rotate onto the central infrastructure team for a period of time to understand the
services available and their constraints, as well as to provide an end-user perspective
to those teams.

People
To function well across YarnIt, all of these teams will need to have a company-wide
perspective of their work. The infrastructure teams need to build infrastructure that
works and that is genuinely useful and desirable for the rest of the company. The ML
teams embedded with the business need to have a mindset that cooperation is best, so
they should be looking for opportunities to collaborate across divisions.

Default Implementation
Here is an oversimplified default implementation of the centralized infrastructure /
decentralized modeling model:

• Hire a centralized team (leader) with ML infrastructure and production skills:•
— Hire software engineering staff to build ML infrastructure.—
— Hire ML production engineering staff to run the infrastructure.—

• Each product team hires experts in their own business units:•
— Hire ML engineering staff to build models directly with the product teams.—
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• Develop a practice of internal reports of findings for review by senior•
stakeholders.

• Establish company-wide technical infrastructure standards.•
• Plan compensation by successful implementation and compensate not only•

for meeting business goals but also for efficiency of utilizing the central
infrastructure.

• Select processes that will aid in cross-organizational collaboration such as cross-•
team ML findings reviews.

• Start a privacy, quality, fairness, and ethics program to establish standards and•
compliance monitoring for those standards.

Conclusion
Introducing ML technologies into an organization for the first time is difficult, and
the best path will necessarily be different from organization to organization. Success
will require thinking, in advance, about the organizational changes necessary to
ensure success. This includes being honest about the missing skills and roles, process
changes, and even entire missing suborganizations. Sometimes this can be solved
by hiring or promoting the right new senior leader and charging them with the
implementation. But often the necessary organizational changes will span the whole
company.

Table 14-1 summarizes various organizational structures, and their impacts and
requirements around people, process, and rewards.

Some teams, such as the production engineering or software engineering teams,
will not require significant ML skills to start being effective. But they will benefit
from study groups, conference attendance, and other professional development activ‐
ities. We also need to build ML skills among business leaders. Identify a few key
leaders who can understand the benefits and complexities of adding ML to your
infrastructure.

The biggest barrier to success, though, is often the tolerance of the organization’s
leadership for risk, change, and details, as well as for sticking with ML because it
might take a while to manifest returns. To make progress with ML, we have to
take risks and change what we do. And ensuring that the teams are focused on
business results will help adoption. This involves altering processes that work well
and changing the behavior of successful teams and leaders. It often means risking
successful lines of business as well. To understand the risks being taken, leaders have
to care about some of the details of the implementation. Leaders need to be tolerant
of risk but plainly care about the ultimate reliability of their ML implementation.
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Table 14-1. Summary of structures and requirements

Centralized ML infrastructure and
expertise

Decentralized ML infrastructure
and expertise

Hybrid with centralized
infrastructure and
decentralized modeling

People Specialized teams with clear focus,
nexus of influence on ML priorities
and investments.

Experimentation mindset is required.

Leaders/senior members need to be
effective collaborators and influencers
outside of their own organization.

Teams need to be the champions
of ML quality, fairness, ethics, and
privacy across the company.

ML expertise is spread across various
teams and is often both duplicated
and sparse.

Leaders/senior members need to
encourage and enforce internal
communities.

Siloed decisions will cause bad/
inconsistent customer experiences
and thereby significant business
impacts.

Teams across all product areas need
to gain expertise on ML quality,
fairness, ethics, and privacy.

Centralize ML infrastructure
and modeling for common/core
business use cases but encourage
individual model development
for specific needs.

Avoids duplication and improves
team efficiencies and consistency,
especially at scale.

ML quality, fairness, ethics, and
privacy need to be in the DNA
across all departments.

Process Needs a lot of cross-functional
collaboration for making decisions
and sharing knowledge.

Key stakeholders across business units
need to review proposals and results,
and launch plans collectively.

Decentralized/independent model
evaluation is needed to ensure and
measure business goals and impacts.

Validate changes in combinations to
avoid unintentional regressions and
establish go/no-go review meetings.

Needs a lot of documentation
around best practices, knowledge,
evaluation, and launch criteria to
maintain consistency, or a deliberate
decision not to maintain any outside
of local team scope (which is
problematic for ML).

Key stakeholders across business
units need to review proposals and
results, and launch plans collectively.
Well-structured and moderated go/
no-go meetings are needed to avoid
delays.

Establish standards for technical
infrastructure for ML pipelines.

Needs cross-functional
collaboration and decent
documentation between
infrastructure and individual
product teams on a project/
program basis.

Establish cross-functional teams
with clear accountability.

Regular cross-functional syncs
should occur at project/program
level.

Key stakeholders across business
units need to review proposals
and results, and launch plans
collectively.

Rewards On top of overall quality and
meeting business goals, individual/
team performance needs to be
measured based on the effectiveness
of cross-functional collaboration.

Establish mechanisms to compensate
both ML and product teams together
for successful AI feature launches.

On top of overall quality and
meeting business goals, individual/
team performance needs to be
measured based on consistency,
published quality standards, and
operating internal ML communities.

On top of overall quality
and meeting business goals,
individual/team performance
needs to be measured based on
reusability, evolution of common
infrastructure, and speed of
execution.

336 | Chapter 14: Practical ML Org Implementation Examples



CHAPTER 15

Case Studies: MLOps in Practice

This book has laid out principles and best practices for MLOps, and we’ve done our
best to provide examples throughout. But there is nothing like hearing stories from
folks working in the field to help see how these principles play out in the real world.

This chapter provides a set of case studies from different groups of practitioners, each
detailing a specific issue, challenge, or crisis that they have lived through from an
MLOps perspective. Each story was written by the practitioners themselves, so we
can hear in their own words what they went through. We can see what they faced,
how they dealt with it, what they learned, and what they might do differently next
time. Indeed, it is striking to see how things as deceptively simple as load testing,
or as seemingly unrelated as a launched update to an entirely different mobile app,
can cause headaches for those in charge of daily care and feeding of ML models and
systems. (Note that some of the details may have been glossed over or omitted to
protect trade secrets.)

1. Accommodating Privacy and Data Retention Policies in
ML Pipelines

By Riqiang Wang, Dialpad

Background
The automatic speech recognition (ASR) team at Dialpad is responsible for the
end-to-end speech transcription system that generates live transcripts for various AI
features (collectively known as Dialpad AI) for our customers across the world. Vari‐
ous subcomponents of our AI system heavily rely on the ASR outputs to make further
predictions, so any error in the transcripts gets propagated to other downstream
natural language processing (NLP) tasks, such as real-time assists or named entity
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recognition (NER). Therefore, we continually aspire to improve the ASR models in
our ML pipelines.

Problem and Resolution
In 2020, our system was achieving great accuracy for typical North American dialects,
but our benchmarking as well as anecdotal evidence showed that other dialects were
often mistranscribed. As we expanded our business to other major English-speaking
countries like the United Kingdom, Australia, and New Zealand, we needed to at
least reach the same bar set for North American dialects. Consequently, we started
looking into how to improve ASR accuracy for specific dialects, or even the plethora
of dialects within North America. This included transfer learning experiments and
using specialized lexicons, but on their own they were not enough. Privacy is at the
center of everything we do at Dialpad, which is also a major challenge in most of the
modern ML ecosystems. In this case study, we discuss a couple of challenges we’ve
come across and the solutions we’ve implemented as we worked toward deploying a
model for multiple dialects while respecting user privacy.

In a departure from the relevant literature, we mainly use the term
dialects instead of accents because we recognize variations beyond
the accent (i.e., the sound of the speech). For example, New York
and New Zealand dialects differ also in vocabulary, phrasal expres‐
sions, and even grammar. We want to ideally address all these
aspects in making ASR more inclusive.

Challenge 1: Which dialects?
At Dialpad, we value user privacy, and to power various AI features, we need massive
amounts of data for model training. Therefore, accommodations have to be made
within our Dialects pipeline. Specifically, we keep as little metadata related to calls as
possible, and remove calls when needed for privacy reasons.

But for training a good Dialects model, we wanted to know which of our users speak
with a given dialect, be it British, Australian, or others. Thus, we needed as much
metadata as feasible so we could sample accordingly for each dialect.

We first considered ideas such as letting human transcribers annotate the accent
being spoken in each call, but then realized that crucially, it is extremely difficult
to pinpoint accents without having experience with them, especially with non-native
speakers, who are more likely to have idiolects than dialects (i.e., each speaker has
their own way of speaking). Then we thought about letting users self-report dialects,
but such classification self-evidently raises data privacy concerns that cut against our
motivating goal of inclusiveness.
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Solution: Get rid of the concept of dialects!
Ultimately, we realized that regardless of a given user’s dialect, we just wanted our
model to do better with the speech that it was then struggling with. The ASR model
did well with North American dialects because we had been feeding it North Ameri‐
can speech, so we could also improve this existing model by adding undersampled
data, building a model agnostic of dialects. We ended up simply getting more data
that our model was doing poorly on, filtered by the model’s own confidence measure.
We manually transcribed this underrepresented data and trained a new model with
this dataset plus the original training dataset.

Within a few rounds of model tuning and evaluations, the ASR models started
performing better on the underrepresented dialects test set that we manually curated,
without any changes to the training techniques or model architecture. More impor‐
tantly, this extra dialect dataset was only a tiny fraction of the larger original training
data, but made a significant difference in performance. This shows the importance
of intentionality and diversity in data collection. It also suggests that we can rely on
confidence/uncertainty measures as a pseudo-diversity measure for data collection,
when true diversity is difficult to measure.

Challenge 2: Racing the clock
Making Dialpad’s no-cost, customizable data-retention policy available as standard to
all customers means that a customer can request their data to be deleted anytime,
or schedule new data to be available for only a specific period of time. These
substantial privacy wins, however, require equally substantial cleverness across the
entire ASR system in terms of model testing and experimentation, and especially
so for the Dialects ML pipeline that consists of multiple steps: collection of audio,
transcription, data preparation, experimentation, and final productionization. These
steps can together span over multiple quarters, longer than the lifespan of some of
the collected data. That means training data and test sets are not constant, making
it difficult to reproduce experimental results, sometimes leading to delays in training
the models and launching the desired improvements for customers.

Late in the process of rolling out the new Dialects model, we saw that it performed
well on multiple test sets, but performed significantly worse with one single test set
across multiple internal trials (compared to the model in production, released six
months earlier). This halted deployment of the model while we investigated why. We
used multiple methods, including training the new Dialects model from scratch and
checking data partitioning (after a previous misadventure inadvertently mispartition‐
ing between training data and test data).

We also wanted to reproduce the results from the production model by using the
same process to train a model, but 11 months later, the data subject to retention
policies had begun expiring, and we didn’t have the exact training dataset anymore.
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This made it difficult to reproduce the results of past model builds, and we gained
only inconclusive results. Ultimately, the key insight to resolving the discrepancy
was that the previous model that had performed well on the test set was actually
in use during the time the data from production was taken to make the test set.
Since our human transcribers create test-set transcripts by editing production model
transcripts, this means that the reference transcript of this test set is biased toward the
output of the old model. We will never know for sure, however, because the transient
nature of data subject to arbitrary data retention regimes compounds the problem of
building and maintaining a sufficient corpus for underrepresented data.

Solutions (and new challenges!)
We see this experience as a good step toward integrating our respect for data privacy
goals with the rigor of reproducible R&D. By the end of this project, we had created
a separate, specialized data team that handles ASR or the NLP team’s data tasks,
redefining our whole data collection and annotation preparation process. The data
team’s task is to standardize our test-set creation process, creating dynamic test sets
that provide high reproducibility even if some test data needs to be removed because
of data retention policies. For example, data with time-based retention policies are no
longer considered when creating a test set, and the data team also handles manual
data deletions by backfilling, while monitoring how performance metrics on our test
sets change over time.

The team has also standardized training data collection: instead of each ASR engineer
writing their own query to get data from our database, we can now submit a request
to the data team, and it will provide structured data as needed, including accounting
for (and even avoiding) data flagged for deletion. As confidence in the accuracy
and integrity of our human annotation pipeline improves, we are also exploring
the possibility of identifying personal data elements at scale so that they could be
removed or tokenized in lieu of fully deleting the transcript. While difficult, this
challenge suggests a way in which privacy-promoting, data-minimizing techniques
could secure much more robust access to ML training data.

Takeaways
Integrating with privacy and data retention policies undoubtedly introduces chal‐
lenges in ML pipelines, especially those powering the primary use cases of a
customer-facing product/service. In our use case, working toward a more inclusive
ASR model for Dialects, we first learned that even a little diversity in our training
data makes the model more robust. In traditional ML practices, we tend to emphasize
the size of the training data, but our results demonstrate that quality—and specif‐
ically, diversity—is irreplaceable. More importantly, we can get diversity without
probing into users’ privacy by using the model confidence measure.
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Secondly, although these efforts at diversity were complicated by our commitment
to honoring customer choice in their data usage, we discovered that with careful
curation, we could engineer robustness and reproducibility into our ML pipeline,
alongside efficiency gains, by standardizing dataset creation with a dedicated team.
We believe abandoning the “trade-off ” narrative ultimately improves our access to
needed customer data by demonstrating we are willing to put in the effort to be good
stewards. Efforts like our Diversity and Dialects initiatives likewise demonstrate to
customers the value of wide participation in, and representation by, ML training sets.

2. Continuous ML Model Impacting Traffic
By Todd Phillips, Google

Background
Here’s a story from an incident within Google from several years ago. For confi‐
dentiality, we obscure some of the details and don’t say exactly which system was
impacted, but the broad strokes of the story are still worth retelling.

The system in question included a continuous ML model that helped predict the
likelihood of clicks on certain kinds of results in a search engine setting, continually
updating on new data as it came in. Data came in from several sources, including
web browsers and specialized apps on mobile devices. (See Chapter 10 for more
background on continuous ML models.)

One day, an improvement was made to one of the apps that contributed a particularly
large amount of traffic to the system. As part of the improvement, code was included
that asked the app to issue the most recent query a second time after an app update
was made, in order to make sure that the served results had the freshest state. This
improvement was pushed out to all installations of the app as one instantaneous
update. For the sake of ominous foreshadowing, we will call this mass instantaneous
update issue A.

Problem and Resolution
What happened over the next day and a half was interesting. The moment each
device in the world received the update, it reissued the most recent query. This resul‐
ted in a huge spike in traffic, but because the queries were being issued automatically,
there were no additional user result clicks. This data with many more queries but no
additional clicks was staged for retraining of the continuous ML model.

Because of an unrelated issue, which we will call issue B, the original push was rolled
back. Each device that got the original update now updated back to the previous
version. This, of course, caused each one to follow the protocol of reissuing the most
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recent query yet again, causing a third round of duplicate queries and even more data
that had no associated clicks.

At this point, the continuous ML model was now happily training on all the corrup‐
ted data. Because the corrupted data included a lot of traffic with no associated clicks,
the model was getting a signal that the overall click-through rate in the world was
now about half of what it had been just a few hours before. The resulting learning
within the model soon led to changes in the served models and, not surprisingly,
lower served predictions than normal. This soon set off numerous alerts, and the
model ops folks started to notice a problem with no obvious root cause because
the app owners and the model owners had no visibility into each other’s systems—
indeed, they were in completely different areas of a much larger organization.

Meanwhile, the unrelated issue B that had caused the rollback was fixed, and the
app folks pushed the update again. This caused—you guessed it!—another round of
updates on each mobile device with the app, and still yet another round of duplicate
queries.

By this time, the ops folks had pushed the stop button on the continuous ML model
training, and all model training was stopped. The most up-to-date version of the
model was therefore one that has been impacted by the corrupted data.

Also by this time, word has gotten through the organization, and the root cause has
been traced to the recent app push, but the specific cause of the changes in model
predictions due to the app update was not readily apparent. The behavior that an app
update caused a duplicate query was not widely known, and those who knew about it
on the app side did not make the connection to the way that it could impact training
data in a continuous ML model. Thus, it was assumed that the update may have
contained another bug, and the decision was made to re-roll back the re-update of the
app and observe for a few hours after that. And of course, this re-rollback created still
yet one more round of duplicate queries and corrupted data.

Once the rollback was completed and several hours of system observations were
done, there was enough information available to be sure that the problem was just
in the way that the pushes were being done. The mitigation turned out to be simple:
stop making updates to the app in terms of rollbacks and re-updates, and then let the
continuous ML system roll forward and catch up to the new state of the world. The
ML model eventually saw clean data with the appropriate click-through rates.

Takeaways
One thing we took away from this study is that the many attempted mitigating
actions actually ended up doing as much harm as good, and in some ways extended
the period of impact. In retrospect, if we had just allowed the model to roll through,
the system likely would have recovered much more smoothly and gracefully than it
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did in the wake of all our attempts to fix things. Sometimes it pays to just hold tight
and roll through.

3. Steel Inspection
By Ivan Zhou, Landing AI

Background
Manufacturers in many industries rely on visual inspections to detect critical defects
during production of steel rolls. I am an ML engineer at Landing AI and wrote this
case study to show some data-centric techniques we used to develop deep learning
models for visual inspection tasks.

Recently, my team and I worked on a steel inspection project (Figure 15-1). The
customer had been developing a visual inspection model for years and had it running
in production. But their models achieved only 70% to 80% accuracy. I was able to
rapidly prototype a new deep-learning model that achieved 93% accuracy at detecting
defects in the project.

Figure 15-1. This case study focuses on detecting defects in steel rolls that may have
occurred in production
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The goal of this project was to accurately classify the defects among the customer’s
hot rolling dataset; hot rolling is a key stage in the production pipeline of steel rolls.
The defects were spread across 38 classes, and many defect classes had only a couple
hundred examples.

The customers had been working on this problem for almost 10 years, and the best
performance their model was able to achieve was only 80% accuracy, which was not
sufficient for the client’s needs. Over the years, the customers had tried to bring
on several other AI teams to improve the accuracy of their models. All attempted
to improve the performance by architecting several state-of-the-art models, but ulti‐
mately none were able to make any improvements.

Problem and Resolution
I went onsite to work on this project. I hired three local interns to help me label those
images. In the first week, I spent almost all of my time learning about defect classes,
managing the labeling work, and reviewing their labels. I gave data to interns in small
batches. Every time they finished, I would review their labels and share with them
feedback if there was a labeling error.

We didn’t label all data at once. We labeled 30% of the data per class in the first
iteration, pinpointed all the ambiguities, addressed them, and then labeled the next
30%. So we had three iterations of labeling over two weeks. We focused on defects
that might be introduced in the “roll” stage of the manufacturing pipeline, after the
metal is cast but before it is finished. Defects can occur from a variety of physical
conditions in the hot process, and are grouped by category. In the end, we labeled
18,000 images and threw away more than 3,000 that we thought were confusing
(Figures 15-2 and 15-3).
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Figure 15-2. Details of the hot rolling setting
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Figure 15-3. Timeline for data labeling, label review, and model training

One of the challenges that took us lots of time was to manage and update the defect
consensus. Out of 38 defect classes, many pairs of classes looked very similar at first
glance, so they easily confused the labelers. We had to constantly discuss ambiguous
cases when disagreement occurred, and we had to update our defect definitions to
maintain defect consensus among three labelers and ML engineers. For example, can
you tell there are three distinctive defect classes from the nine images in Figure 15-4?

Figure 15-4. Visually identifying the distinctions among the three classes (black line,
black stripe, and scratch) from nine images is far from trivial

So here are the answers. After we saw more samples of these three classes, we could
continuously correct the boundaries between these three defect types and update
their defect definitions (Figure 15-5). We spent lots of effort for labelers to maintain
a defect consensus. For samples that were really hard to identify, we had to remove
them from our training dataset.
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Figure 15-5. Three defect types with updated definitions

Besides the defect definition, it was also critical to establish labeling consensus. The
labelers were not only expected to tell defect classes accurately, but since we were
doing object detection, we also wanted their bounding boxes labeling to be tight and
consistent.

For example, the samples shown in Figure 15-6 were from a defect class called roller
iron sheet, which featured very dense holes or black dots. When labelers labeled
the images, they were expected to draw tight bounding boxes around all areas with
clear patterns of defects. If discontinuity occurred, they needed to annotate with
separate boxes, like the third image (Figure 15-6). However, the fourth image was
rejected during labeling reviewing, because the box was too wide and loosely covered
a defective area. If we allowed this label to be added to our training set, it would
mislead the model when calculating the losses, and we should avoid that.
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Figure 15-6. The third image shows a well-annotated discontinuity, while the fourth
image was rejected during labeling review because the box too loosely covers a defective
area

Takeaways
We spent less than 10% of our time doing model iterations. After each time we
trained a model, I spent most of my time reviewing falsely predicted examples and
identified root causes of errors. Then I took those insights back to further clean the
dataset. After two iterations like this, we achieved 93% accuracy on the test set, or a
65% reduction in error rate. This far exceeded the baseline and the expectations that
the customers had at that time and met their needs.

4. NLP MLOps: Profiling and Staging Load Test
By Cheng Chen, Dialpad

Background
Dialpad’s AI team builds NLP applications to help users get more from their calls,
including real-time transcript formatting, sentiment detection, action-item extrac‐
tion, and more. Developing and deploying large NLP models systems is a challenge.
Fitting them within the constraints of real-time, cost-effective performance makes
that challenge significantly more complex.

348 | Chapter 15: Case Studies: MLOps in Practice



1 See the 2019 paper “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding” by
Jacob Devlin et al.

In 2019, the large language model BERT achieved state-of-the-art NLP performance.1

We planned to leverage it to provide more accurate NLP capabilities, including
punctuation restoration and date, time, and currency detection. To reduce cloud cost,
however, our real-time production environment has very limited resources assigned
to it (GPU is not an option, and we have one CPU at most for many models). In
addition, our hard limit on model inference is 50 ms per utterance. Meanwhile, the
BERT base model has 12 layers of transformer blocks with 110 million parameters.
We knew it would be challenging to optimize it to fit into our real-time environment,
but we still overlooked one critical piece: the difficulty of obtaining an accurate
estimate on how much faster the model has to be to meet our real-time demand.

Problem and Resolution
Our team needed to perform local profiling in order to benchmark various NLP
models, which ran model inference over a large number of randomly sampled utter‐
ances and calculated average inference time per utterance.

Once the average inference speed met a fixed threshold, the packaged model would
be handed over to our data engineering (DE) team, which would then do canary
deployment in our Google Kubernetes Engine (GKE) cluster, and monitor a dash‐
board of various real-time metrics (Figure 15-7) with an ability to drill down into
specific metrics (Figure 15-8).

This was how we gradually deployed a new BERT-based punctuator model (whose
goal is to restore punctuation) into production, and this was where the confusion
started. For a large language model based on BERT, often DE teams discovered
that the latency or queue time bumped up significantly and they had to roll back
the deployment. Clearly, the local profiling configuration was not aligned with the
actual pattern occurring in the production system. This discrepancy may come from
two sources: cluster compute resource allocation and/or traffic pattern. However,
the reality was that scientists didn’t have the right tools to properly benchmark
model inference. This was resulting in time-consuming deployments and rollbacks
with lots of wasted effort on repeated manual work. Add to that the anxiety about
deploying a potentially underperforming model into the system, with the resulting
system congestion and service outages. As a stopgap measure, applied scientists and
engineers agreed to increase the compute resource, such as adding one more CPU for
inference, but we clearly needed a better approach to benchmarking.
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Figure 15-7. A dashboard monitoring real-time metrics
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Figure 15-8. Drill-down to a specific metric for a given model

An improved process for benchmarking
What we needed was a way to allow NLP applied scientists to efficiently obtain
benchmarking results that were close to production metrics. (Note that canary
deployment was still required in production deployment.)

Apart from the production system, the DE team also maintained a staging environ‐
ment where NLP models were deployed and integrated with the product interface
(reference) prior to production deployment. Our QA team made test calls to test
various call features, and applied scientists leveraged this environment to ensure
that the model ran properly with the product UI. However, they had not used it to
thoroughly benchmark large models.

The DE team proposed a comprehensive and self-serve load-test tool to help applied
scientists benchmark model inference in the staging environment. When designing
the load-test tool, we kept the following high-level points in mind:

• Load-test data should contain trigger phrases for the model.•
• Load-test data should contain a healthy mix of utterance lengths. It is probably•

better to have longer utterances so as to give a better approximation of how the
system will perform under stress.

• Load-test data should trigger model inference and not get short-circuited by•
optimizations/caches that would lead to misleadingly low runtime latencies.

• We use CircleCI workflows to control automatic deployments to staging.•
• (Optional) Load-test data should have similar characteristics to data expected in•

production.
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After the tool was developed, applied scientists had two options for performing a load
test on staging:

• Audio-based (end-to-end) load test•
— This is a full end-to-end test.—
— This simulates calls on the system.—
— Data is sampled automatically from calls in the staging environment (e.g., QA—

calls) and tries to provide good coverage on certain features.
— This audio can be customized so we can put NLP-specific audio datasets if—

needed.
• Text-based (model specific) load test•

— This targets only a single microservice (e.g., the punctuator or the sentiment—
model).

— This allows us to pick the most difficult inputs to stress-test our models.—

After scientists decided on the type of load test and had all the necessary data in
place, they then deployed the changes to staging and started the load test.

Once the load test began, scientists could monitor the live dashboard for important
metrics such as the Runtime 95th, as shown in Figure 15-9. That is the most signifi‐
cant value when evaluating inference speed. As a rule of thumb, anything below 1
second satisfies the requirement. Currently, most models tend to be clustered at or
below 0.5 seconds.

Figure 15-9. Runtime 95th percentile

With this tool in place, scientists could launch staging tests themselves, without
asking for help from the DE team. The Datadog dashboard also provided a com‐
prehensive breakdown of the runtime performance of each model so that applied
scientists could monitor the metric numbers more closely. Therefore, the load-test

352 | Chapter 15: Case Studies: MLOps in Practice



tool significantly reduced communication overhead during our rapid development
cycle.

Takeaways
Cramming state-of-the-art NLP performance into a resource-constrained real-time
production environment requires very high confidence that benchmarks during test‐
ing will be borne out in production. When our testing methods started failing on
the more resource-intensive BERT model, we reached into our staging environment
to give our scientists a more representative environment to test against and made it
self-serve so they could iterate rapidly. The automatic staging benchmarking step has
since become a standard process in the model development process. Both teams are
now relieved as applied scientists are able to obtain close-to-production estimates on
model inference with great confidence.

5. Ad Click Prediction: Databases Versus Reality
By Daniel Papasian, Google

Background
Google’s ad-targeting systems aim to help maximize the long-term value of shown
ads, which includes minimizing the frequency of displaying unwanted ads to users.
They do so in part by using models to predict the probability that a given ad will
be clicked. When there are opportunities to show ads, an auction is conducted, and
as part of this auction a server uses a model to predict the probability that certain
ads will be clicked. These probabilities are one of several inputs to the auction, and
if the model underperforms, both user and advertiser experience suffers. The act
of displaying the ad results in us inserting a row to our database. The row in the
database corresponds to an ad being shown to the user, with columns associated
with the features used for model training. Additionally, a Boolean column represents
whether the ad resulted in a click. This column is defaulted to false when the row is
inserted.

If the ad is clicked, it generates a record in a click log. The click-logging team runs
a process to remove fraudulent clicks, and publishes a feed of “clean” clicks for
consumption by other internal users. This feed is used to issue an update to the
already created row in the database to mark the ad impression as having resulted in a
click.

The model was trained by looking at the rows in this database as examples, and
using the click bit as the label. The rows in the data were the raw inputs to the
model and the label for each event recording either “resulted in a click” or “was
not clicked.” If we were to never update the models, they would work well for some
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time, but eventually degrade in accuracy because of changing user behaviors and
advertiser inventories. To improve the overall behavior, we automated the retraining
and deployment of the click prediction model.

Before a retrain is pushed to production, we validate that we are improving the
model’s accuracy. We hold back a portion of the dataset from training and use it
as a test set. Our training process handled this with Bernoulli sampling: for each
ad shown in the 48 hours before training, there would be a 99% chance we’d train
on it, and a 1% chance we would reserve it for our test set. This was implemented
with a test_set bit on the row that we’d set to true 1% of the time. When the
training system read the events table, it would filter out all rows where this was
true. Newly trained models would be sent to this validation system, which generated
inferences on recent events with the test_set bit. It compared these inferences to the
observed labels to generate statistics about model accuracy. Models would be pushed
to production only if the new models performed better than the old model over the
recent test set events.

Problem and Resolution
One Monday, we came in and were greeted by an automatic alert: we were showing
ads at a rate far below normal. We quickly realized that our mean predicted probabil‐
ity of a click was one-tenth of what it typically was. Whether we show an ad at all
was gated in part on how probable we thought it was that the ad would be clicked. As
such, the widespread underprediction of click probability explained the alert on the
rate of ads being shown. But questions still remained: did our users’ behavior change?
Or had our model update somehow hurt us, despite our validation measures?

We queried the database for all rows in the 48 hours before the training cutoff. No
matter how we aggregated it, we saw click rates that were astoundingly typical. The
model was acting as if clicks were far more rare, but the data in our database didn’t
reflect that. But why didn’t our validation system block the model from going to
production? We tasked both our data science and production engineering teams to
dig into the situation to understand what happened.

The data science team started by looking at the validation system: this was supposed
to keep us from pushing out models that performed worse than the versions we were
replacing. The validation system computed a loss metric by generating inferences
over the test set. Lower loss was supposed to mean better models. The logs from
Sunday’s validation run indicated we processed the test events as expected, and that
the loss statistic was lower for the new model than our old model. With a hunch,
someone decided to rerun the validation system with the same pair of models across
the test set. The test set was reread from the database, and the inferences were
generated as expected. This time, the loss metric indicated the new model was worse
than the old model—the opposite result from Sunday. What changed?
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The production engineering teams checked a range of data from a large set of
systems, trying to see whether any unexplained anomalies were in relevant systems.
Curiously, a graph showed revenue of $0 for Wednesday through Sunday, and then a
spike to very large amounts of revenue in the early hours of Monday. The graph was
produced by a system that watched the feed of verified clicks.

When the production engineer and data scientist teams conferred with each other
and shared their findings, they realized the model was underpredicting because of a
failure of the infrastructure responsible for processing the raw click logs and distrib‐
uting the clean click feed to consumers. The clean clicks arrived to the ML training
system late—not until early Monday morning, after the model had last trained.
Without any evidence to the contrary, the model believed that every ad shown in this
period didn’t result in a click. Every event was a true negative or a false negative, and
that’s all our test set contained as well. The model that we trained concluded that the
ads were awful and no one would click on any of them, which was accurate given the
data that we had when we trained the model. When the click-processing feed caught
up, the validation data was relabeled so that ads that resulted in clicks were labeled
that way. This explained why subsequent attempts at validation of the already trained
model were still failing. The issue was resolved by retraining on the corrected data.

Takeaways
In retrospect, it’s important to note that our model never directly predicted the
probability of a click. Rather, it predicted the probability of a shown ad being marked
as “was clicked” in our database at the time that training happens. Indeed, while
we expect that our database is an accurate reflection of reality, bugs or failures may
cause differences. In this case, a production failure in an upstream system caused
the meaning of this label to diverge from what we wished it to reflect. Our models
built using supervised learning techniques predict labels in our training set, and it’s of
critical importance that our labels reflect reality.

The teams collaborated to write a postmortem to analyze what happened and how
to prevent it. This turned out to be a significant learning experience for our organiza‐
tion. We gathered the timeline: from the perspective of people working on the click
prediction models, the problem wasn’t detected until Monday. We later learned that
the team that worked on the click logs noticed their pipeline was broken on Wednes‐
day with a software release, and were aware of the problem the same day when their
alerting indicated the feed wasn’t being processed. They put in place mitigations to
ensure that clicks would still be eventually billed, and figured they’d fix the rest of the
data-feed processing first thing on Monday. They hadn’t realized their system was a
data dependency of an ML process downstream, and how that system was making
assumptions about the completeness of data. We believe many ML pipelines make
assumptions about the completeness of input data and correctness of provided labels
without verifying these assumptions, and as such are at risk for similar problems.
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We listed every potential cause of the outage we could muster; we knew we’d pri‐
oritize these based on effort to make an improvement and expected value of the
improvement. The causes included the lack of integration testing leading to the click
logs breaking, the training system’s reliance on the click log processing being more
reliable than agreed-upon service availability targets, and our assumption that the
most recent events would be representative of all events.

Our follow-ups included establishing an availability target for the click log processing
systems, expanding our validation system to check that the test set’s positive ratio
wasn’t suspiciously low or high, and establishing a process for the click log team
to communicate outages and pause training if serious problems with model health
occurred.

6. Testing and Measuring Dependencies in ML Workflow
By Harsh Saini, Dialpad

Background
At Dialpad, we have a speech recognition and processing engine that has several
ML dependencies. Audio comes in from our telephony backend and gets transcribed
in real time through our proprietary ASR models, where formatting and readability
improvements are also made. The output is then fed into our language-specific
NLP models like NER and sentiment analysis. This pipeline can be simplified as a
flowchart (Figure 15-10).

Figure 15-10. Flowchart of Dialpad speech-recognition and processing pipeline

However, in reality, the pipeline is not as straightforward as shown in this simplified
diagram. Multiple speech-recognition models may be used, depending on the user’s
location and/or the product line they are using within Dialpad. For instance, a
user from the UK using the call-center product line will be provided with a speech-
recognition model fine-tuned on the UK dialect of English and trained on call-center
domain-specific knowledge. Similarly, a user from the US using the sales product line
will have their call transcribed using a speech-recognition model trained on the US
English dialect and domain-specific knowledge for sales calls.

Additionally, for the NLP, several task-specific models run in parallel to perform tasks
such as sentiment analysis, question detection, and action-item identification. With
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this in mind, the simplified flowchart can be extended to highlight the diversity of
models in Dialpad’s production ML pipeline.

Problem and Resolution
Figure 15-11 highlights some of the ML dependencies that exist for NLP task-specific
models with regards to the upstream speech-recognition models. NLP model perfor‐
mance is sensitive to ASR model output artifacts. While most NLP models are not
overly sensitive to minor changes to ASR model outputs, over time the data changes
significantly enough, and NLP models experience a degradation in performance due
to regression and data drift. A few common updates to ASR that result in a change in
input data distribution for NLP models are as follows:

• Modifications in the vocabulary of the ASR system (e.g., the addition of the word•
coronavirus)

• Changes in the output of the ASR system (e.g., people are saying the same things,•
but we’re getting better at accurately transcribing them)

• Topic drift, whereby people are actually talking about different things (e.g.,•
suddenly everyone starts talking about elections in the US)

Figure 15-11. Some of the ML dependencies that exist for NLP task-specific models

To combat this phenomenon, the DE team at Dialpad, in collaboration with the
data science team, built an offline testing pipeline that could measure NLP model
performance for a given ASR model.

Building the regression-testing sandbox
Some of the key requirements for our regression testing and monitoring system were
as follows:
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• Ensure that monitoring of NLP model performance would happen automatically•
whenever newer ASR models are released.

• Simulate the behavior as observed in production by the models.•
• Collect and report metrics submitted via the evaluation that can be viewed by•

stakeholders.
• Collect model inference artifacts and logs so as to assist in troubleshooting by•

scientists.
• Allow for ad hoc evaluation by data science teams when they wish to evaluate a•

model prerelease.
• Ensure that we could establish comparable baselines, since datasets for evaluation•

could be modified out of band.
• Be a scalable system so that multiple evaluations could occur simultaneously, and•

also not be bottlenecked as we increase either the dataset sizes or the number of
models being tested.

Given these requirements, the following design decisions were made:

• Kubeflow Pipelines (KFP) was chosen as the platform to host the sandbox:•
— KFP allows users to write custom directed acyclic graphs (DAGs) called—

pipelines.
— Each pipeline is sandboxed, and the platform as a whole can independently—

scale to the demands of all running pipelines.
— The engineering teams at Dialpad are heavily invested in Kubernetes and—

Argo Workflows, which are the underlying technology powering KFP, so it
seemed prudent to use this platform.

• The pipelines in KFP will build the correct infrastructure for evaluation by•
selecting the correct model deployment artifacts, given the evaluation criteria.
— This will be done on the fly and will not be persisted to reduce cost.—
— The testbed will be decoupled from model versions and be aware of the order—

of dependencies only for correct orchestration.
• Outputs from every model will be persisted for 30 days for debugging purposes.•
• Datasets for every task-specific NLP model would be versioned so as to track•

changes in evaluation data.
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• Metrics will be collected for every combination of ASR model version, NLP•
model version, and dataset version.
— This ensures that we can disambiguate among different dependencies—

correctly.
— These metrics would then be visualized in a dashboard for observability.—

• The input to the testing pipeline is raw audio recordings of conversations, since•
the idea was to capture whether an ASR model has changed in such a way
that it alters the output enough that the downstream NLP model has varied
performance.
— Once audio samples were collected, they would be annotated to state whether—

they contain a specific NLP moment. For instance, a given audio snippet
would be annotated by a human to verify whether it contained positive,
negative, or neutral sentiment for the sentiment analysis task.

— As you can see, this is an arduous task and is still one of the biggest bot‐—
tlenecks for this project. It is extremely time-consuming to correctly slice,
annotate, and store such samples for every NLP task (Figure 15-12).

Figure 15-12. The regression-testing environment at a high level

And within KFP, a pipeline would simulate evaluation for a single combination of
ASR model version, NLP model version, and dataset version. Since KFP allows us to
run multiple pipelines in parallel, this would allow us to scale to all combinations of
evaluation we would like to perform (Figure 15-13).
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Figure 15-13. The architecture of the KFP pipeline as a DAG

Monitoring for regression
Once the pipelines were built on KFP, the next part of the project was to automat‐
ically perform regression tests whenever dependencies changed for NLP models.
Luckily, at Dialpad we have mature CI/CD workflows managed by engineering, and
they were updated to trigger KFP pipelines whenever ASR models were updated in
the transcription service. The CI/CD workflow would send a signal to KFP with
information about the ASR models, NLP models, etc., and the evaluation would then
commence on KFP. Metrics would be stored, and Slack messages would be emitted
containing a summary of the evaluation.

Once operational, this process captures performance evaluation data for all NLP
task-specific models that have testing data available on the platform. For example, the
F1-score of the NLP sentiment analysis model degraded by ~25% over the course of
a year, as shown in Figure 15-14; the graph highlights the absolute difference from a
baseline. This observation alerted the NLP team to investigate the issue and discover
that accumulated data drift was the cause of the degradation. A new sentiment model
was retrained using the latest ASR model output and released to production in just a
few months.

Another tangential benefit of this process is that it allows for ad hoc evaluation of
NLP models against different ASR models prior to production release. For instance,
it is possible to measure the accuracy of a sentiment analysis model, prior to release,
against an ASR model trained on new English dialects, such as Australian or New
Zealand English.
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Figure 15-14. F1-score of the NLP sentiment analysis model

Takeaways
This ML regression-testing platform developed at Dialpad has provided data scien‐
tists and engineers with much improved visibility on the impact of new model relea‐
ses on all dependent components in our production stack. Even with an incomplete
knowledge of all the deployed production models, people are able to understand
whether a proposed release is going to impact the stability and performance of other
models in the production pipeline. This reduces the chances of a rollback and can
provide an early indication if more work needs to be done to improve compatibility
with existing components.

The testing platform is under active development. Other moving pieces are being
addressed, one of which is keeping the sandbox orchestration in sync with produc‐
tion and allowing for other “live data” that only transiently lives during a call on pro‐
duction and is difficult to simulate in the regression-testing platform. Another feature
being considered is how to provide automated alerting when a proposed release has
significant impact on downstream models rather than the current human-in-the-loop
approach.
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